ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:54.50KB ,
资源ID:5547889      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5547889.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文((陈婉珍)新人教版五年级数学上植树问题.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

(陈婉珍)新人教版五年级数学上植树问题.doc

1、数学广角-植树问题(第一课时)教学设计【教材分析】:本册数学广角主要渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问

2、题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的一种情况(两端都种:棵数=间隔数+1)【设计理念】:课标提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。最明显的表现在于每册教材多了“数学广角”这一单元,通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。人教版第九册的“数学广角”的内容之一是简单的“植树问题”。 在植树问题的

3、教学中,解题不是主要的教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想化归思想。 课标中关于第二学段目标有以下阐述:“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“探求给定事物中隐含的规律或变化趋势。”本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画图亲身体验选择的间隔长不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题(两端都种)的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举

4、一反三,解决实际问题的能力。【教学目标】: 1经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。2会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。3感悟构建数学模型是解决实际问题的重要方法之一。【教学重、难点】:理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。【教学流程】:一、创设情境,提出问题。1、创设情境同学们,学校要举行“绿化美化新校园”的活动,请你们帮助老师算一算:2、出示问题。(课件出示问题):学校准备在全长100米的小路一边植树,每隔5米栽一棵(两端要种)。一共需要多少棵树苗?师:今天我们一起去解

5、决数学中的植树问题,愿意吗?(板书:植树问题)二、解决问题,寻找规律。1、理解信息。请看题,你获得了哪些信息?预设:从以下几点理解题意什么是“一边植树”?能解释一下“两端要种”吗?(板书:两端要种)追问:与“两边要种”意思一样么?每隔5米是什么意思?生:就是两棵树之间的“距离”;师:两棵树之间的一段距离,我们也可以看作一个间隔。2、猜想。师:如果这条路的一边用一条线段来表示,请你口算一共需要多少棵树苗呢?(20棵或21棵)你们都是怎么想得?听起来,好像都挺有道理,到底哪个答案是对的?大家能用更加直观的方法,来验证自己的答案吗?(画图)3、化繁为简.化繁为简师:(课件演示)请看,“两端要种”,先

6、在开头种上一棵,然后每隔5米种一棵大家看,种了多少米了?生:20米师:一共要种多少米?(100米)照这样一棵一棵,一直画到100米?你有什么感想?生:师:这样一棵一棵画下去,方法是可以的,但棵数太多了,太麻烦了,那有什么更简单的方法吗?生:师:好办法,把100米先变成20米,这样每隔5米画一棵,画的棵数就少多了,问题也就变简单多了。学生上台板演画图并解答。师追问:间隔长度是几米?有几段间隔?种了几棵数?间隔段数只有4段,为什么可以种5棵树呢?师:这样一来,虽然不能直接验证了,但可以从简单例子入手,看看间隔的段数和棵数到底有会什么关系。(3)、举例验证。师:一个事例还不能说明植树问题的规律,我们

7、还需要别的例子。现在我们来做一个试验。出示:在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)学生分小组合作研究、填写表格:特点棵数间隔数棵数与间隔数的关系方案1方案2方案3方案4(4)汇报交流,发现规律。(根据学生的回答,教师完成表格)师:通过画图我们找出了间隔段数和棵数,现在请你静静地观察表格,你们有什么发现?师追问:也就是说要求一共要种几棵树,先要求出什么?三、基本练习1、同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行有多少人? 2、园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后

8、一棵的距离有多远?师追问:先求什么?,再求什么?为什么要加1呢?3、梳理方法。师:让我们回忆一下,刚才我们遇到两端种的植树问题,是通过怎样的办法,最后成功解决的?生:师小结:当我们遇到一个不能直接解决的难题,像100米不好直接画图,怎么办?可以先给出一个猜想,要判断这个猜想对不对,可以 化繁为简用简单的例子验证,并且可以从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。(课件出示)这是一种很重要的数学方法,以后我们还会经常用到它!四、联系生活,建构模型。同学们,像这种包含点数和间隔数的例子,不仅植树问题中有,生活中的许多问题也有,谁能举几个这样的例子?学生自由发言,如果学生说不上来,

9、老师顺势说明:生活中像这样的例子大家不好想,老师倒想出了几个:1、出示手,我们的手指有五个,手指和手指之间都有间隔,请观察这里有几个手指,几个间隔,他们之间有什么关系?4个手指,有几个间隔?3个手指呢?2个手指呢?2、小游戏:任意选2个邻桌学生(喻为小树)起立,手拉手(间隔)问:有几棵小树几个间隔? 教师加入其中手拉手,问:现在有(2个间隔,3棵小树)再加一个学生,现在有继续往下说3、学生自由说生活中的例子。4、反馈后小结:通过刚才的发言,我们知道植树问题普遍地存在于我们的生活当中。手指的个数、楼层数、队伍中的人数,教室的灯和课桌、马路边的路灯、花盆等就相当于我们上面提到的树的棵数,而手指的间隔、梯子的架数、人与人之间的距离等等就相当于间隔数,所以,类似于两端都种的这种植树问题的数量间的关系都可以用“棵数=间隔数+1”这个关系式来表示。五、全课总结师:通过本节课的学习,你学会了什么? 6 / 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服