1、人教版七年级数学下册期末质量检测卷(含答案)一、选择题1如图,已知直线a,b被直线c所截,下列有关与说法正确的是( )A与是同位角B与是内错角C与是同旁内角D与是对顶角2下列各组图形,可经平移变换,由一个图形得到另一个图形的是( )ABCD3点在平面直角坐标系中所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A三角形三个内角的和等于B对顶角相等C在同一平面内,垂直于同一条直线的两条直线互相平行D两条直线被第三条直线所截,同位角相等5将两张长方形纸片按如图所示方式摆放,使其中一张长方形纸片的两个顶点恰好落在另一张长方形纸片的两条边上,则1+2的度数为( )A
2、120B110C100D906下列等式正确的是()ABCD7如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系中,已知点A(1,1),B(1,1),C(1,2),D(1,2)把一根长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A(1,0)B(0,1)C(1,1)D(1,2)九、填空题9计算:的结果为_十、填空题10在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是_.十一
3、、填空题11在ABC中,AD为高线,AE为角平分线,当B=40,ACD=60,EAD的度数为_.十二、填空题12如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则_十三、填空题13如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果=40,那么EFB的度数是_度十四、填空题14观察下列等式:1,2,3,4,根据你发现的规律,则第20个等式为_十五、填空题15在平面直角坐标系中,有点A(a2,a),过点A作ABx轴,交x轴于点B,且AB2,则点A的坐标是_十六、填空题16如图,在平面直角坐标系中,有若
4、干个整数点,其顺序按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0),根据这个规律探索可得第2021个点的坐标是_十七、解答题17计算:(1)(2)十八、解答题18求下列各式中x的值:(1)9x2250;(2)(x3)3270十九、解答题19按逻辑填写步骤和理由,将下面的证明过程补充完整如图,点在直线上,点、在直线上,且,点在线段上,连接,且平分求证:证明:( )( ) (平角定义)平分(已知) ( )( )(已知) ( )(等量代换)二十、解答题20已知:如图,把ABC向上平移4个单位长度,再向右平移3个单位长度,得到ABC,(1)画出A
5、BC,写出A、B、C的坐标;(2)点P在y轴上,且SBCP=4SABC,直接写出点P的坐标二十一、解答题21已知是的整数部分,是的小数部分,求代数式的平方根二十二、解答题22如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)
6、如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值二十四、解答题24已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时(1)当点P在N右侧时:若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;(2)若镜像,求的度数二十五、解答题25问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC
7、,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系【参考答案】一、选择题1A解析:A【分析】根据同位角的定义判断即可【详解】解:1和2是同位角,故选:A【点睛】本题考查了同位角、内错角、同旁内角及对顶角的定义,能熟记同位角、内错角、同旁内角及对顶角的定义的内容是解此题的关键,注意数形结合2B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移
8、得到;B、图形的形状和大小没有变化,符合平移的性质,属于解析:B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向注意结合图形解题的思想3B【分析】根据坐标的特点即可求解【详解】点在平面直角坐标系中所在的象限是第二象限故选B【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特
9、点4D【分析】根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可.【详解】解:A、三角形三个内角的和等于180,故此说法正确,是真命题;B、对顶角相等,故此说法正确,是真命题;C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题;D、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题.故选D.【点睛】本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解.5D【分析】过E作EFCD,根据平行线的性质可得1=BEF,2=DEF, 再由BED=90即可解答【详解】解:过E作EFCD,ABCD,EFCDAB,1=BEF,2=
10、DEF,BEF+DEF=BED=90,1+2=90,故选:D【点睛】本题考查平行线的判定与性质,熟练掌握平行线的性质是解答的关键6C【分析】根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B、表示计算算术平方根,所以,故错误C、,故正确D、,故错误故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF
11、平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8B【分析】先求出四边形ABCD的周长为10,得到202110的余数为1,由此即可解决问题【详解】解:A(1,1),B(1,1),C(1,2),D(1,2),四边形ABCD的周长为1解析:B【分析】先求出四边形ABCD的周长为10,得到202110的余数为1,由此即可解决问题【详解】解:A(1,1),B(1,1),C(1,2),D(1,2),四边形ABCD的周长为10,202110的余数为1,又AB=2,细线另一端
12、所在位置的点在A处左面1个单位的位置,坐标为(0,1)故选:B【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型九、填空题96【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数十、填空题10(-3,-2)【分析】根据关于x轴对称点的坐标特点:横坐
13、标不变,纵坐标互为相反数可得答案.【详解】点P(3,2)关于x轴对称的点Q的坐标是(3,2).故答案为:(3,2).【点解析:(-3,-2)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】点P(3,2)关于x轴对称的点Q的坐标是(3,2).故答案为:(3,2).【点睛】本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.十一、填空题1110或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即解析:10或40;【分析】首先根
14、据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即可求解【详解】解:当高AD在ABC的内部时B=40,C=60,BAC=180-40-60=80,AE平分BAC,BAE=BAC=40,ADBC,BDA=90,BAD=90-B=50,EAD=BAD-BAE=50-40=10当高AD在ABC的外部时同法可得EAD=10+30=40故答案为10或40【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出BAE的度数十二、填空题1268【分析】先根据平行线的性质求得
15、DEF的度数,再根据折叠求得DEG的度数,最后计算AEG的大小【详解】解:AD/BC,DEF=EFG=56,由折叠可得,GEF解析:68【分析】先根据平行线的性质求得DEF的度数,再根据折叠求得DEG的度数,最后计算AEG的大小【详解】解:AD/BC,DEF=EFG=56,由折叠可得,GEF=DEF=56,DEG=112,AEG=180-112=68故答案为:68【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等十三、填空题1370【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折
16、叠可得DEFD1EF,AED140解析:70【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140,DEF70,四边形ABCD是长方形,ADBC,EFBDEF70故答案为:70【点睛】考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出DEFD1EF解答十四、填空题1420【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20【分析】观察已知等式,找出等式
17、左边和右边的规律,再归纳总结出一般规律,由此即可得出答案【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的规律为:分子为,分母为归纳类推得:第n个等式为(n为正整数)当时,这个等式为,即故答案为:【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键十五、填空题15(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),A解析:(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的
18、纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),ABx轴,AB2,|a|2,a2,当a2时,a20;当a2时,a24点A的坐标是(0,2)、(4,2)故答案为:(0,2)、(4,2)【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键十六、填空题16(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0解析:(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标
19、为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数则n列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上因为1+2+3+63=2016,则第2021个数一定在第64列,由下到上是第5个数因而第2021个点的坐标是(64,4)故答案为:(64,4)【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错
20、的题目十七、解答题17(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键解析:(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可【详解】(1)解:(2)解:【点睛】本题主要考查了实数的解析:(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,
21、再移项运算即可【详解】(1)解:(2)解:【点睛】本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键十九、解答题19已知;垂直定义;2;角平分线定义;等角的余角相等;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题【详解】证明:ABAC(已知),解析:已知;垂直定义;2;角平分线定义;等角的余角相等;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题【详解】证明:ABAC(已知),BAC=90(垂直的定义),2+3=90,1+4+BAC=180(平角定义),1+4=180-BAC=90,AC平
22、分DAF(已知),1=2(角平分线的定义),3=4(等角的余角相等),ab(已知),4=5(两直线平行,内错角相等),3=5(等量代换)故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等【点睛】本题考查了垂直的定义、角平分线的定义、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆二十、解答题20(1)作图见解析,A(1,5),B(0,2),C(4,2);(2)P(0,10)或(0,-12)【分析】(1)分别作出A,B,C的对应点A,B,C即可解决问题;(2)设P(0,m解析:(1)作图见解析,A(1,5),B(0,2),C(4,2)
23、;(2)P(0,10)或(0,-12)【分析】(1)分别作出A,B,C的对应点A,B,C即可解决问题;(2)设P(0,m),构建方程解决问题即可【详解】解:(1)如图,ABC即为所求,A(1,5),B(0,2),C(4,2); (2)设P(0,m),由题意:4|m+2|=443,解得m=10或-12,P(0,10)或(0,-12)【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质二十一、解答题21【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题考查实数的估
24、算、实数解析:【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键二十二、解答题22(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比
25、较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/O
26、P/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-1
27、16-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键二十四、解答题24(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,解析:(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作Q
28、FCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可【详解】(1),证明:,;过点Q作QFCD,;(2)如图,当点P在N右侧时,过点Q作QFCD,同(1)得,如图,当点P在N左侧时,过点Q作QFCD,同(1)得,同理可得,;综上,的度数为或【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系二十五、解答题25(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1)
29、,理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100