ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:32.01KB ,
资源ID:5506064      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5506064.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数学-教学案例.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数学-教学案例.doc

1、任意角的三角函数”的教学案例一、以学生的学习为视角,可以对这节课的教学进行如下反思:(1)学生对课堂提问,回答是否积极?学生能否独立或通过合作探索出问题的结果?(2)学生处理课堂练习题情况如何?可能的原因是什么?(3)教学任务是否完成?下面我们着重分析一下提问的效果。在回答教学设计中的各项提问时,大多数学生存在一定困难,特别是“问题1:任意画一个锐角,借助三角板,找出sin的近似值”和“问题5:现在,角的范围扩大了,由锐角扩展到了0360内的角,又扩展到了任意角,并且在直角坐标系中,使得角的顶点与原点重合,始边与x轴的正半轴重合在这样的环境中,你认为,对于任意角,sin怎样定义好呢?”对于问题

2、1,除了由于时间久而遗忘有关知识外,学生不熟悉独立地由一个锐角,构造直角三角形并求锐角三角函数的过程是主要原因,他们更习惯于在给定的直角三角形中解决问题。对于问题5,教师强调“在坐标系下怎么样?”后,有学生开始尝试回答。这说明这个问题要求的思维概括水平较高,学生仅利用锐角三角函数的有关知识,难以形成当前研究任意角三角函数的思想方法。因此,教师必须要提供必要的脚手架。二、对任意角三角函数概念教学的启示要建立任意角三角函数概念,角的概念先扩大,角的表示(过程的):正角、零角、负角,象限角,与角终边相同的角,+k360到+2k(结构的),学生对角的概念的图式重新组织,整理成弧度的形式才更适宜后面内容

3、的学习。任意角三角函数与锐角三角函数的关系是“上下位”关系,即任意角三角函数的概念是抽象度更高、包摄范围更广的概念。因此,学生学习这个概念是以顺应为主的认知过程,产生与原认知结构不协调的方面是:首先,要建立锐角三角函数的一个等价的表示过程,即放在直角坐标系下,用终边上点的坐标来表示,进一步用终边与单位圆的交点的坐标表示。其次,在不同象限下,角所对应的三角函数的表示,符号等;第三,任意角三角函数的定义域、值域。活动1:取一个锐角0放在坐标系下,始边与轴的正半轴重合,终边在第一象限内。让学生观察,进而探索发现,用终边上点的坐标计算sin0, cos0, tg0.体验用单位圆与终边交点的坐标表示si

4、n0, cos0, tg0. 过程1,学生能内化上面的过程,用符号运算表示出任意的第一象限内的角的三角函数,例如,单位圆与终边交点P的坐标是(x,y),则. 活动2,学生观察终边在其它象限下的角的三角函数的情形。主要是表示,以及三角函数值的符号的变化。过程2,学生能内化上面的体验。知道不同的象限角的三角函数与其终边与单位圆交点的关系,表示,以及函数值符号的变化。对象1,对上述过程进行压缩,归纳概括出定义,即利用单位圆定义任意角的三角函数,并明确确定其定义域、值域。图式1,学生能与已有的相关知识建立起联系。例如弧度的概念,锐角三角函数、函数的概念等等。此时学生能回答诸如“锐角三角函数与任意角三角

5、函数的区别是什么?”学生建构概念意义的过程并非都沿着:活动过程对象图式的顺序线性发展的,而是经常会由对象通过解压缩返回到过程,或者掌握一个过程的逆过程,由一个过程复合另一个过程形成新的“过程”,等等。例如,上述过程的逆过程包括:由三角函数值判断角所在的象限;由给出的角(特殊值)求其终边与单位圆的交点,等等。随着进一步学习,学生的任意角三角函数概念还要不断发展,例如角与-,2-,-,+等的三角函数值的关系,此时,学生计算一个角的三角函数值的方法途径(过程)更多,这样学生就形成许多新的“过程”,因而在处理有关问题时就更灵活。因此,要使学生形成良好的任意角三角函数概念,就要重视对“过程”的教学和反思

6、。三、数学史的启发数学史反映了人类探索数学规律的自然发展过程,这个过程对教学设计中如何预设学生的认知发展顺序,以及预测学生可能的学习困难都很有启发。以本设计为例。陈振宣先生在2008年第10期中小学数学(高中版)上撰文“三角函数定义的比较研究”,提出原来教材中采用的定义方式其实是欧拉于1748年提出的,现教材中定义的方式是上述方法与单位圆相结合后的产物,所以从认知的角度讲,可能前面的方法更容易让学生接受,当然单位圆的方法有更多优点,特别是在后面的学习中,它的作用会愈发突出。因此,在采用单位圆定义之前,可以先用坐标系的方法作为铺垫,这在白涛老师关于“任意角三角函数”的教学设计中已有体现。四、对新

7、的教学设计的建议综上,作为任意角三角函数的第一节课,我认为中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系(过程的),并在此基础上初步建立任意角三角函数概念的意义(对象的)。因为大量有关三角函数的运算还要依赖后面的知识才能完成。以上述理论为基础,对任意角三角函数概念的教学设计,可以在原设计方案基础上,当学生组织起锐角三角函数的概念,例如计算方法、定义域、值域、符号表示、有关结论(与点的位置的选取无关)后,首先提供“坐标系”作为脚手架,并引发学生的认知冲突“在坐标系下,如何研究一个任意角的三角函数?”并以坐标系为平台,有层次的研究随角的变化,即第一象限下的锐角(认识

8、研究方法的变化,以及符号表示的变化)02范围内的角(认识该范围内角的三角函数的表示方法,特别是值域的变化)不同象限下终边相同的角(逐渐形成计算一个任意角的三角函数的操作过程)。通过观课及课后的研讨,我的另一点体会是,教学设计既要重视“承上”,即与学生原有认知结构的联系,也要重视“启下”,即从后续知识发展的角度审视教学安排。有关的例子,锐角三角函数概念教学时如果是先给一个锐角,再构造三角形,而不是象当前大多数教材中采用的直接放在一个直角三角形下,对学生概念的迁移会更有帮助。另一个是,我想到的,本章第一节“任意角和弧度制”,应该完成用弧度制表示一个角及其终边相同的角的集合如何表示,会对本节课“任意角的三角函数” 概念的教学更有意义。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服