ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:22KB ,
资源ID:5498529      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5498529.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(一元二次方程教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一元二次方程教学设计.doc

1、一元二次方程教学设计 一、内容和内容解析1内容一元二次方程的概念,一元二次方程的一般形式2内容解析一元二次方程是方程在一元一次方程基础上 “次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0(a0)也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a0的条件是确保满足 “二次”的要求,从另一个侧

2、面为理解一元二次方程的概念提供了契机二、目标和目标解析1教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念(2)了解一元二次方程的一般形式,会将一元二次方程化成一般形式2目标解析(1)通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性(2)将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a0的条件,完善一元二次方程的概念学生能够将一元二次方程整理成一般形式,

3、准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件 三、教学问题诊断分析一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念培养建模思想,进一步提升数学符号语言的应用能力,让学生自己概括出一元二次方程的概念

4、,得出一般形式,对初三学生是必须的,也是适可的本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫本课的教学难点是一元二次方程的概念四、教学过程设计1创设情境,引入新知教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:问题1这个方程属于我们学过的某一类方程吗?师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识问题2这样的方程在其

5、他实际问题中是否还存在呢?你能再想出一个例子吗? 师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题2拓宽情境,概括概念给出课本问题1、问题2的两个实际问题,设未知数,建立方程问题1 如图211-1,有一块矩形铁皮,长100 cm,宽50 cm在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,

6、就能制作一个无盖方盒如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形? 问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?教师引导学生思考并回答以下几个问题:全部比赛共有_场若设应邀请个队参赛,则每个队要与其他_个队各赛一场,全部比赛共有_ 场由此,我们可以列出方程_,化简得_问题3 这些方程是几元几次方程?师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模将列得的方程化简整理,判断出方程的次数【设计意图】在建模的过程中不仅

7、加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习问题4 这些方程是什么方程?师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式(1)一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程(2)一元二次方程的一般形式是其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项【设计意图】让学

8、生自己给出定义就是对过去所学一元一次方程的定义的类比和对比,概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升3辨析应用,加深理解问题5 请你说出一个一元二次方程,和一个不是一元二次方程的方程师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛地参与追问学生所举的反例为什么不是一元二次方程?是什么方程?【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下: 开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层

9、教学分层指导的效果问题6 下列方程哪些是一元二次方程?例1下列方程哪些是一元二次方程?师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a0条件加深认识【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识问题7指出下列方程的二次项、一次项和常数项及它们的系数例2 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:(1);(2)师生活动: (1)将方程去括号得:,移项,合并同类项得:,其中二次项是,二次项

10、系数是3;一次项是,一次项系数是,常数项是教师应及时分析可能出现的问题(比如系数的符号问题)(2)一元二次方程的一般形式是,过程略例3关于x的方程,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?答案:时此方程为一元二次方程;,时此方程为一元一次方程【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆4巩固概念,学以致用教科书第4页: 练习【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况5归纳小结,反思提高请学生总结今天这节课所学内容,通过对比之前所学其他方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误6布置作业:教科书习题211复习巩固:第1,2,3题五、目标检测设计1下列方程哪些是关于x的一元二次方程url=(/url1);(2);(3);(4)【设计意图】考查对一元二次方程概念的理解2关于的方程是一元二次方程,则( )A BC D【设计意图】考查的条件3将关于的一元二次方程化为一般形式,并指出二次项系数【设计意图】考查化简方程的能力,及对一元二次方程一般式的掌握情况

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服