ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:13.82KB ,
资源ID:5495811      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5495811.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(实际问题与二次函数(商品利润问题)教学设计.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

实际问题与二次函数(商品利润问题)教学设计.docx

1、22.3 实际问题与二次函数第2课时 二次函数与商品利润教 学 目 标知识技能:会根据实际问题列二次函数,并能根据实际情况确定自变量的取值范围;使学生能够运用二次函数及其图象、性质解决实际问题。方法过程:让学生通过阅读、合作讨论、动手画草图、分析、对比,能找出实际问题中的数量关系,揭示两个变量的关系,培养学生结合图形与其性质解决问题的能力解决问题:通过两个变量之间的关系,进一步体会二次函数的应用,体验数形结合思想。情感态度:通过具体实例,让学生经历应用二次函数解决实际问题得全过程,体验数学来源于生活,服务于生活的辩证观点。重点:培养学生解决实际问题,综合解决问题的能力,渗透数形结合的思想方法

2、。难点:对实际问题中变量和变量之间的相互依赖关系的确定。教学过程:基础扫描1. 二次函数y=2(x-3)2+5的对称轴是 直线x=3 , 顶点坐标是 (3 ,5) 。当x= 3 时,y的最小 值是 5 。 2. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 , 顶点坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大 值是 -1 。 3.二次函数y=2x2-8x+9的对称轴是 直线x=2 , 2 时,函数有最 小 值, 顶点坐标是(2 ,1) .当x= 是 1 。在日常生活中存在着许许多多的与数学知识有关的 实际问题。如繁华的商业城中很多人在买卖东西。如果你去买商品,你会选买

3、哪一家呢?如果你是商场经理, 如何定价才能使商场获得最大利润呢?自主探究问题1.已知某商品的进价为每件40元,售价是每件 60元, 每星期可卖出300件。市场调查反映:如果调整价格 ,每涨 价1元,每星期要少卖出10件。要想获得6090元的利润,该 商品应定价为多少元?分析:没调价之前商场一周的利润为 6000 元; 设销售单价上调了x元,那么每件商品的利润 (20+x) 元,每周的销售量可表示为 可表示为 (300-10x) 件,一周的利润可表示为 (20+x)( 300-10x) 元,要想获得6090元利润可 列方程 (20+x)( 300-10x) =6090 。合作交流问题2.已知某商

4、品的进价为每件40元,售价是每件60元,每星期可卖出300件。市 场调查反映:如调整价格 ,每涨价一元, 每星期要少卖出10件。该商品应定价为多 少元时,商场能获得最大利润?问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖 出300件。市场调查反映:如调整价格, 每降价一元,每星期可多卖出20件。 如何定价才能使利润最大?问题4.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖 出300件。市场调查反映:如调整价格 , 每涨价一元,每星期要少卖出10件; 每降价一元,每星期可多卖出20件。 如何定价才能使利润最大?解:设每件涨价为x元时获得的总利润为y元

5、. y =(60-40+x)(300-10x) (0x30) =(20+x)(300-10x) =-10x2+100x+6000 =-10(x2-10x ) +6000 =-10(x-5)2-25 +6000 =-10(x-5)2+6250 当x=5时,y的最大值是6250. 定价:60+5=65(元)解:设每件降价x元时的总利润为y元.y=(60-40-x)(300+20x) 怎样确定x 的取值范围 =(20-x)(300+20x) =-20x2+100x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0x20) 所以定价为60-2.5=57.5时利润最大,

6、最大值为6125元.由(2)(3)的讨论及现在的销 售情况,你知道应该如何定 价能使利润最大了吗?答:综合以上两种情况,定价为65元时可获得 最大利润为6250元.解决这类题目的一般步骤(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值.当堂检测1. 某商店购进一批单价为20元的日用品,如果以单 价30元销售,那么半个月内可以售出400件.根据销 售经验,提高单价会导致销售量的减少,即销售单价 每提高1元,销售量相应减少20件.售价提高多少元 时,才能在半个月内获得最大利润? 解:设售价提

7、高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元2.某商店经营一种小商品,进价为2.5元,据市场 调查,销售单价是13.5元时平均每天销售量是500 件,而销售单价每降低1元,平均每天就可以多售 出100件. (1)假设每件商品降低x元,商店每天销售这种 小商品的利润是y元,请你写出y与x之间的函数关 系式,并注明x的取值范围; (2)每件小商品销售价是多少元时,商店每天销 售这种小商品的利润最大?最大利润是多少? (注:销售利润=销售收入购进成本)解析:(1)降低x元后,所销售的件数是(500+100x), y=100x2+600x+5500 (0x11 )(2)y=100x2+600x+5500 (0x11 )配方得y=100(x3)2+6400 当x=3时,y的最大值是6400元. 即降价为3元时,利润最大. 所以销售单价为10.5元时,最大利润为6400元.答:销售单价为10.5元时,最大利润为6400元.布置作业:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服