1、八年级数学上册教学反思一、指导思想坚持“三个代表”重要思想和科学发展观,积极贯彻执行教育局和学校提出的具体目标要求,全面贯彻落实教育方针,以人为本,以着眼于学生的终身发展为目标,全面深入贯彻落实素质教育,构建高效课堂。规范“自成教育”体系,配合学校做好“数字校园”和“人民满意学校”办学,积极深入探索“双思三环六步”课堂教学模式和“分组合作”学习方式,关爱学生,平等对待学生,放眼于学生终身能力培养,把学生培养成适应未来社会发展的有用的栋梁之材。通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,合作探究能力
2、,以及分析问题和解决问题的能力。二、教材分析 本学期的教学内容共计五章:第十一章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。第十二章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。 第十三章实数。从平方根于立方根说起,学习有关实数的有关知识,并
3、以这些知识解决一些实际问题。第十四章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境建立数学模型概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。 第十五章教材通过实例引出本章学习主要内容:合并同类项,去括号,添括号法则,整式的加减乘除运算和因式分解。教材还提供了“阅读与思考”、“观察与
4、猜想”、“数学活动”等板块,丰富学生学习内容。三、进一步落实“自成教育”自信成功,自学成才,自立成人。基本出发点是促进学生全面、持续、和谐地发展。培养激发学生兴趣,保护自尊,帮助学生建立自信,树立克服困难的勇气和信心。在上学期基础上,进一步加强数学知识能力学习;数学思维创新能力培养。结合教学,发展学生合情推理和演绎推理能力,提高分析问题解决问题能力;学习习惯上进一步培养良好的行为习惯。独立思考,及时总结,纠错改错,提前预习,合作交流,探究学习等习惯,应得到进一步强化。遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学
5、生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。使学生通过学习数学得到成功的体验。四、教学目标落实通过三维目标(知识与技能目标、过程与方法(数学思考与解决问题)目标、情感与态度目标)的落实最终实现能力的培养。认真落实“双思三环六步”教学模式。钻研教材,突破重点、难点,抓住关键,深入了解学生,激发学生积极性,因人而宜,制定课堂上有效的辅导、教学方案,使课堂教学更生动有趣,使学生参与到数学活动中来。五、教学常规落实严格遵守学校的各项规章制度,不迟到早退,积极参加各项活动及学习
6、,团结协作。精心备课,备教材备学生,密切生活实际和学生实际,整合教学资源,运用好多媒体教学,利用一切可以利用的有利因素,为教学服务。上好每一节课,根据学生实际合理利用教学资源,上好每一节课。布置作业做到有的放矢,有针对性,有层次性。认真批改作业。同时对学生的作业批改及时、有效,分析并记录学生的作业情况,将他们在作业过程出现的问题作出及时反馈,针对作业中的问题确定个别辅导的学生,并对他们进行及时的指导. 积极做好学困生转化工作。对学习过程中有困难的学生,及时给予帮助,帮助他们找到应对措施,帮助他们渡过难关。六、积极参与教研活动深入探究“合作分组教学”。做教学的组织者,学生的引导者,教学相长。认真
7、研读新课程标准,钻研新教材,扩充整合教材内容,发挥每个学生的作用,调动积极性,搞好学生互相评价,共同提高。积极参与学校组织的数学教研活动,认真听课评课,提高认识,日益提高教学水平。日常教学中,共同探讨教学中遇到的问题,协作进步,共同提高。适应新时期教学工作的要求,各方面严格要求自己,认真钻研新课标理念,改进教法,坚持做好业务学习笔记,和教后反思,搞好课题研究。七、深入业务学习进一步探索“双思三环六步”课堂教学模式。认真学习业务理论,并做好一周一次的业务笔记,提高自己的理论水平,丰富自己的业务知识;积极参加一切课题研究活动,敢想敢干,敢于创新,不怕失败。在学习策略上及时指导学生,培养思维,方法技
8、巧,提升能力。及时对教学活动作出反思,每周写出一至两个教学反思,真正体会自己的优缺点,做到有的放矢,进一步提高自己。充分备好每个教案,做到备学生,备教材,每周及时上传四个教案和四个课时作业。发挥多媒体教学优势,积极利用和制作课件,提高自己电化教学能力。八年级数学教学反思在新课标的形式下,教学大纲更强调的是数学与生活的联系。这一点我们在实际的教学中有比较深的体会。让学生在学习中,更好的体验生活,体验数学与生活的关系。我们认为,这个非常的重要。学数学为了什么?可能很多老师都曾经考虑过这个问题。可是在平时的教学中,却没有很好的解决。总是一味的填鸭式的让学生掌握我们要他们掌握的知识,而这些知识在生活中
9、却没有很好的体现。更加离谱的是,学生掌握的知识,很多在我们教师的指导下,只是成为记忆的,感性的。并没有上升到理性的知识。所以,学生学数学是为了升学,为了以后有好的工作。这样就违背了数学的生活性。学生没有在学习中体会到数学对自己生活的影响。所以,我们这样的数学教学就是失败了。经常听到老师说,这一道题目非常重要,中考的时候肯定是必考的。我们可否思考一下,我们在说这些话的时候,有无想想学生的感觉。是否只有好成绩,就意味着我们教学的成功?另外,我们觉得在教学中,多让我们的学生探讨一些问题会更好。因为,在平常的教学中,学生有时会觉得数学的学习非常的枯燥无味,对学生的兴趣有很大的打击。如果我们能多思考我们
10、的教学内容。多想一些适合学生探讨的数学问题。那么学生学习数学的兴趣就会增加。并且,我们还可以将一节课的内容转化为若干个问题。然后让学生去研究和解决。这样学生有了这些课堂的点缀,就会提高学生学习数学的兴趣。我们的数学课堂也就不会那么枯燥了。我们的差生面也不会提高的很快。数学的学习,在某些时候总有一些人会退出学习。而数学教学的现状表明,退出的人就很可能回不来我们的数学学习中。而兴趣的再现让放弃的学生就会重新回到我们的前进的队伍中来。我们希望走的学生越来越少,更多的学生加入我们。八年级数学教学反思 我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋
11、怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓”抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。”学而不思则罔”,”罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方
12、面作些探究。一、在解题的方法规律处反思例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。二,在学生易错处反思学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难
13、免有”错”。例题教学若能从此切入,进行解后反思,则往往能找到”病根”,进而对症下药,常能收到事半功倍的效果!因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了”山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品
14、格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清”庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。八年级数学上册变量与函数的教学反思 一、如何揭示学习目标概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概 念?数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入初中涉及的函数概念的核心是“量与量之间
15、的特殊对应关系”本课中,本人在导言中提出两个问题:“引例1,名侦探柯南中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高你知道其中的道理吗?”、“引例2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”数学研究有时从最简单、特殊的情况入手,化繁为简让学生明确,这一节课我们只研究两个量之间的特殊对应关系“特殊在什么地方?”学
16、生需带着这样的问题开始这一课的学习概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容二、如何选取合适的数学原型从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童
17、话故事等简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示)这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例
18、。对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象过难、过繁的背景会成为学生学习抽象新概念的拦路虎三、如何引领学生经历数学化、形式化的过程“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?
19、”在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量由问题13的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征四、如何引用反例学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵反例引用的时机、反例的量要恰到好处过早、过多的反例会干扰学生对概念的准确理解概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函
20、数概念的背景这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向在备课时,我想从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t 是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系而在(2)班实际上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=1214)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力后来在(1)班上课时,在完成例1、例的教学后,还用到如下反例:问题变式“在这次数学测试中,成绩是学号的函数吗?”、问题变式“北京春季某一天的时间t是气温的函数吗?”、练习2()变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数 的关系,更重要的是让学生养成逆向思维的习惯
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100