1、实实 数数.复习回顾复习回顾1、概念、分类、概念、分类2、绝对值、相反数、倒数、负倒数、绝对值、相反数、倒数、负倒数3、扩大、缩小的变化规律、扩大、缩小的变化规律4、比较大小比较大小5、计算、计算6、解方程、解方程7、明确表示一个数的小数部分和整数部分、明确表示一个数的小数部分和整数部分8、式子有意义的条件、式子有意义的条件.一、概念一、概念v算术平方根,平方根,算术平方根,平方根,v被开方数,根指数,被开方数,根指数,v开平方,开立方,开平方,开立方,v无理数,实数无理数,实数.1 1、平方根的定义:、平方根的定义:若若若若x x2 2=a a a a,则,则,则,则x x就就就就叫做叫做叫
2、做叫做a a a a的的的的_。a a的平方根用的平方根用_表示表示2 2、平方根的性质、平方根的性质 (1 1)一个正数有)一个正数有 平方根,它平方根,它们互为们互为_(2 2)0 0的平方根还是的平方根还是_ (3 3)负数)负数_平方根平方根3 3、平方根的求法:、平方根的求法:如求如求4 4的平方根:的平方根:(2)2=4 4的平方根是2即1 1、立方根的定义:、立方根的定义:若若若若x x3 3=a a a a,则,则,则,则x x就叫做就叫做就叫做就叫做a a a a的的的的_。a a的立方根用的立方根用 表示表示2 2、立方根的性质、立方根的性质 (1 1)一个正数的立方根)一
3、个正数的立方根_ (2 2)0 0的立方根还是的立方根还是_ (3 3)负数的立方根)负数的立方根_3 3、立方根的求法:、立方根的求法:如求如求8 8的立方根:的立方根:23=8 8的立方根是2即2相反数相反数0 没有没有 一个正数一个正数是负数是负数0平方根平方根 立方根立方根平方根与立方根平方根与立方根.区别区别你知道算术平方根、平方根、立方根的区别吗?你知道算术平方根、平方根、立方根的区别吗?算术平方根算术平方根 平方根平方根 立方根立方根表示方法表示方法的取值的取值性性质质开开方方正数正数0负数负数正数(正数(1个)个)0没有没有互为相反数互为相反数(2个个)0没有没有正数(正数(1
4、个)个)0负数(一个)负数(一个)求一个数的平方根求一个数的平方根的运算叫开平方的运算叫开平方求一个数的立方根求一个数的立方根的运算叫开立方的运算叫开立方是本身是本身0,100,1,-1.2.说出下列各数的立方根:1.说出下列各数的平方根和算术平方根:说出下列各数的平方根和算术平方根:(1)169(2)0.16(4)100(3)(5)(5).4、下列运算中,正确的是(、下列运算中,正确的是()A.5、的平方根是(的平方根是()(A)(C)5 (B)(D)6、下列运算正确的是、下列运算正确的是()DD.3、如果一个数的平方根是、如果一个数的平方根是a3和和 2a15,求这个数的立方根。,求这个数
5、的立方根。1、化简:、化简:.不要搞错了6488-4.-4,-3,-2,-1,0,1,2,3.下列说法正确的是()B.练习:1、8是 的平方根,64的平方根是 ;的平方根是 。2、的立方根是(的立方根是(),),的平方根是的平方根是()5.5.一个正数一个正数x x的两个平方根分别是的两个平方根分别是a+1a+1和和a-3,a-3,则则 a=,x=a=,x=X=7146488-432-64的立方根是的立方根是_ .自测:自测:1.1.如果一个数的平方根为如果一个数的平方根为a+1a+1和和2a-7,2a-7,求这求这个数?个数?3.已知已知y=求求2(x+y)的平方根)的平方根 4.已知已知5
6、+的小数部分为的小数部分为 m,7-的小数部分为的小数部分为n,求求m+n的值的值5.已知满足已知满足 ,求求a的值的值.2、实数的性质符号,分类:、实数的性质符号,分类:有理数和无理数有理数和无理数统称为统称为实数实数实数实数有理数有理数无理数无理数实数实数正实数正实数负实数负实数零零二、分类二、分类1、实数的定义,分类:、实数的定义,分类:.实实数数有理数有理数无理数无理数分数分数整数整数正整数正整数 0负整数负整数正分数正分数负分数负分数自然数自然数正无理数正无理数负无理数负无理数无限不循环小数无限不循环小数有限小数及无限循环小数有限小数及无限循环小数一般有三种情况一般有三种情况.下列各
7、数中有理数是下列各数中有理数是 :0.3737737773.判断下列说法是否正确:判断下列说法是否正确:(1)无限小数都是无理数;)无限小数都是无理数;(2)无理数都是无限小数;)无理数都是无限小数;(3)带根号的数都是无理数;)带根号的数都是无理数;(4)实数都是无理数;)实数都是无理数;(5)无理数都是实数)无理数都是实数;(6)没有根号的数都是有理数)没有根号的数都是有理数.一、判断下列说法是否正确:一、判断下列说法是否正确:1.实数不是有理数就是无理数。实数不是有理数就是无理数。()2.无限小数都是无理数。无限小数都是无理数。()3.无理数都是无限小数。无理数都是无限小数。()4.带根
8、号的数都是无理数。带根号的数都是无理数。()5.两个无理数之和一定是无理数。(两个无理数之和一定是无理数。()6.所有的有理数都可以在数轴上表示,反过来,所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。(数轴上所有的点都表示有理数。().数轴上两点数轴上两点A,B分别表示实数分别表示实数 和和 ,求,求A,B两点之间的距离两点之间的距离。.三、相反数、(负)倒数、绝对值、三、相反数、(负)倒数、绝对值、在实数范围内,相反数、倒数、绝对值的意义和有在实数范围内,相反数、倒数、绝对值的意义和有理数的相反数、倒数、绝对值的意义完全一样。理数的相反数、倒数、绝对值的意义完全一样。例
9、如例如:a、b互为相反数,互为相反数,c与与d互为倒数互为倒数则则a+1+b+cd=。2练习:已知实数练习:已知实数a、b在数轴上对应点的位置如图所示。在数轴上对应点的位置如图所示。化简:化简:b a ox2b.求下列数的相反数、倒数和绝对值:求下列数的相反数、倒数和绝对值:2232(2)的倒数是的倒数是 ;(3)2的绝对值是的绝对值是 ;(4)(1)8或或5.11、实数、实数a,b,c,d在数轴上的对应点如图在数轴上的对应点如图11所示,则所示,则它们从小到大的顺序是它们从小到大的顺序是 。c d 0 b a图图111其中:其中:cdb.例:比较大小:例:比较大小:与与3 3、求差法比较大小
10、、求差法比较大小解:解:0.1、的整数部分为的整数部分为3,则它的,则它的 小数部分是小数部分是 ;32六、无理数的整数部分与小数部分六、无理数的整数部分与小数部分.A.2或12 B.2或-12 C.-2或12 D.-2或-12.(2)七、实数的计算七、实数的计算解解:(2).练习:计算:练习:计算:(3)(4)(2).练习:计算下列各式的值练习:计算下列各式的值:.补充练习补充练习.例例5、若、若求求 的值。的值。解:解:3a+40且且(4b-3)20而而3a+4+(4b-3)2=0 3a+4=0且且(4b-3)a=-43,b=34 a2003b2004=(-4/3)2003(3/4)2004=-34.
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100