ImageVerifierCode 换一换
格式:PPT , 页数:39 ,大小:1.12MB ,
资源ID:5465917      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5465917.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(《实数》总复习课件.ppt)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《实数》总复习课件.ppt

1、实实 数数.复习回顾复习回顾1、概念、分类、概念、分类2、绝对值、相反数、倒数、负倒数、绝对值、相反数、倒数、负倒数3、扩大、缩小的变化规律、扩大、缩小的变化规律4、比较大小比较大小5、计算、计算6、解方程、解方程7、明确表示一个数的小数部分和整数部分、明确表示一个数的小数部分和整数部分8、式子有意义的条件、式子有意义的条件.一、概念一、概念v算术平方根,平方根,算术平方根,平方根,v被开方数,根指数,被开方数,根指数,v开平方,开立方,开平方,开立方,v无理数,实数无理数,实数.1 1、平方根的定义:、平方根的定义:若若若若x x2 2=a a a a,则,则,则,则x x就就就就叫做叫做叫

2、做叫做a a a a的的的的_。a a的平方根用的平方根用_表示表示2 2、平方根的性质、平方根的性质 (1 1)一个正数有)一个正数有 平方根,它平方根,它们互为们互为_(2 2)0 0的平方根还是的平方根还是_ (3 3)负数)负数_平方根平方根3 3、平方根的求法:、平方根的求法:如求如求4 4的平方根:的平方根:(2)2=4 4的平方根是2即1 1、立方根的定义:、立方根的定义:若若若若x x3 3=a a a a,则,则,则,则x x就叫做就叫做就叫做就叫做a a a a的的的的_。a a的立方根用的立方根用 表示表示2 2、立方根的性质、立方根的性质 (1 1)一个正数的立方根)一

3、个正数的立方根_ (2 2)0 0的立方根还是的立方根还是_ (3 3)负数的立方根)负数的立方根_3 3、立方根的求法:、立方根的求法:如求如求8 8的立方根:的立方根:23=8 8的立方根是2即2相反数相反数0 没有没有 一个正数一个正数是负数是负数0平方根平方根 立方根立方根平方根与立方根平方根与立方根.区别区别你知道算术平方根、平方根、立方根的区别吗?你知道算术平方根、平方根、立方根的区别吗?算术平方根算术平方根 平方根平方根 立方根立方根表示方法表示方法的取值的取值性性质质开开方方正数正数0负数负数正数(正数(1个)个)0没有没有互为相反数互为相反数(2个个)0没有没有正数(正数(1

4、个)个)0负数(一个)负数(一个)求一个数的平方根求一个数的平方根的运算叫开平方的运算叫开平方求一个数的立方根求一个数的立方根的运算叫开立方的运算叫开立方是本身是本身0,100,1,-1.2.说出下列各数的立方根:1.说出下列各数的平方根和算术平方根:说出下列各数的平方根和算术平方根:(1)169(2)0.16(4)100(3)(5)(5).4、下列运算中,正确的是(、下列运算中,正确的是()A.5、的平方根是(的平方根是()(A)(C)5 (B)(D)6、下列运算正确的是、下列运算正确的是()DD.3、如果一个数的平方根是、如果一个数的平方根是a3和和 2a15,求这个数的立方根。,求这个数

5、的立方根。1、化简:、化简:.不要搞错了6488-4.-4,-3,-2,-1,0,1,2,3.下列说法正确的是()B.练习:1、8是 的平方根,64的平方根是 ;的平方根是 。2、的立方根是(的立方根是(),),的平方根是的平方根是()5.5.一个正数一个正数x x的两个平方根分别是的两个平方根分别是a+1a+1和和a-3,a-3,则则 a=,x=a=,x=X=7146488-432-64的立方根是的立方根是_ .自测:自测:1.1.如果一个数的平方根为如果一个数的平方根为a+1a+1和和2a-7,2a-7,求这求这个数?个数?3.已知已知y=求求2(x+y)的平方根)的平方根 4.已知已知5

6、+的小数部分为的小数部分为 m,7-的小数部分为的小数部分为n,求求m+n的值的值5.已知满足已知满足 ,求求a的值的值.2、实数的性质符号,分类:、实数的性质符号,分类:有理数和无理数有理数和无理数统称为统称为实数实数实数实数有理数有理数无理数无理数实数实数正实数正实数负实数负实数零零二、分类二、分类1、实数的定义,分类:、实数的定义,分类:.实实数数有理数有理数无理数无理数分数分数整数整数正整数正整数 0负整数负整数正分数正分数负分数负分数自然数自然数正无理数正无理数负无理数负无理数无限不循环小数无限不循环小数有限小数及无限循环小数有限小数及无限循环小数一般有三种情况一般有三种情况.下列各

7、数中有理数是下列各数中有理数是 :0.3737737773.判断下列说法是否正确:判断下列说法是否正确:(1)无限小数都是无理数;)无限小数都是无理数;(2)无理数都是无限小数;)无理数都是无限小数;(3)带根号的数都是无理数;)带根号的数都是无理数;(4)实数都是无理数;)实数都是无理数;(5)无理数都是实数)无理数都是实数;(6)没有根号的数都是有理数)没有根号的数都是有理数.一、判断下列说法是否正确:一、判断下列说法是否正确:1.实数不是有理数就是无理数。实数不是有理数就是无理数。()2.无限小数都是无理数。无限小数都是无理数。()3.无理数都是无限小数。无理数都是无限小数。()4.带根

8、号的数都是无理数。带根号的数都是无理数。()5.两个无理数之和一定是无理数。(两个无理数之和一定是无理数。()6.所有的有理数都可以在数轴上表示,反过来,所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。(数轴上所有的点都表示有理数。().数轴上两点数轴上两点A,B分别表示实数分别表示实数 和和 ,求,求A,B两点之间的距离两点之间的距离。.三、相反数、(负)倒数、绝对值、三、相反数、(负)倒数、绝对值、在实数范围内,相反数、倒数、绝对值的意义和有在实数范围内,相反数、倒数、绝对值的意义和有理数的相反数、倒数、绝对值的意义完全一样。理数的相反数、倒数、绝对值的意义完全一样。例

9、如例如:a、b互为相反数,互为相反数,c与与d互为倒数互为倒数则则a+1+b+cd=。2练习:已知实数练习:已知实数a、b在数轴上对应点的位置如图所示。在数轴上对应点的位置如图所示。化简:化简:b a ox2b.求下列数的相反数、倒数和绝对值:求下列数的相反数、倒数和绝对值:2232(2)的倒数是的倒数是 ;(3)2的绝对值是的绝对值是 ;(4)(1)8或或5.11、实数、实数a,b,c,d在数轴上的对应点如图在数轴上的对应点如图11所示,则所示,则它们从小到大的顺序是它们从小到大的顺序是 。c d 0 b a图图111其中:其中:cdb.例:比较大小:例:比较大小:与与3 3、求差法比较大小

10、、求差法比较大小解:解:0.1、的整数部分为的整数部分为3,则它的,则它的 小数部分是小数部分是 ;32六、无理数的整数部分与小数部分六、无理数的整数部分与小数部分.A.2或12 B.2或-12 C.-2或12 D.-2或-12.(2)七、实数的计算七、实数的计算解解:(2).练习:计算:练习:计算:(3)(4)(2).练习:计算下列各式的值练习:计算下列各式的值:.补充练习补充练习.例例5、若、若求求 的值。的值。解:解:3a+40且且(4b-3)20而而3a+4+(4b-3)2=0 3a+4=0且且(4b-3)a=-43,b=34 a2003b2004=(-4/3)2003(3/4)2004=-34.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服