ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:2.72MB ,
资源ID:5463757      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5463757.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(代入消元法解二元一次方程组课件.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

代入消元法解二元一次方程组课件.ppt

1、新人教七(下)第八章二元一次方程组新人教七(下)第八章二元一次方程组8.2 代入消元法解方程(代入消元法解方程(1)七年级 数学 多媒体课件 教学目的教学目的:让学生会用代入消元让学生会用代入消元法解二元一次方程组法解二元一次方程组.教学重点教学重点:用代入法解二元一次用代入法解二元一次方程组的一般步骤方程组的一般步骤.教学难点教学难点:体会代入消元法和化未体会代入消元法和化未知为已知的数学思想知为已知的数学思想.代入消元法解二元一次方程组代入消元法解二元一次方程组 “一切问题都可以转化为数学问题,一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切数学问题都可以转化为代数问

2、题,而一切代数问题又都可以转化为方程问题,一切代数问题又都可以转化为方程问题,因此,一旦解决了方程问题,一切问题将因此,一旦解决了方程问题,一切问题将迎刃而解迎刃而解!”法国数学家法国数学家法国数学家法国数学家 笛卡儿笛卡儿笛卡儿笛卡儿 Descartes,1596-1650Descartes,1596-1650 由由两个一次方程两个一次方程组成并组成并含有两个未知数含有两个未知数的的方程组叫做二元一次方程组方程组叫做二元一次方程组 方程组里方程组里各个方程的公共解各个方程的公共解叫做这个叫做这个方程方程组的解组的解二元一次方程组中各个方程的解一定是方程组的解二元一次方程组中各个方程的解一定是

3、方程组的解 ()方程组的解一定是组成这个方程组的每一个方程的解方程组的解一定是组成这个方程组的每一个方程的解()判判断断错错对对知识回顾知识回顾1、指出、指出 三对数值分别是下面哪一三对数值分别是下面哪一个方程组的解个方程组的解.x=1,y=2,x=2,y=-2,x=-1,y=2,y+2x=0 x+2y=3x y=4x+y=0y=2xx+y=3解:解:()是方程组()是方程组()的解;)的解;()是方程组()是方程组()的解;)的解;()是方程组()是方程组()的解;)的解;x=1,y=2,y=2xx+y=3x=2,y=-2,x y=4x+y=0 x=-1,y=2,y+2x=0 x+2y=3口

4、口 答答 题题篮球联赛中,每场比赛都要篮球联赛中,每场比赛都要分出胜负,分出胜负,每队胜每队胜1 1场得场得2 2分,负分,负1 1场得场得1 1分分.某队为了争取较好某队为了争取较好名次,想在全部名次,想在全部2222场比赛中得到场比赛中得到4040分,那么这个队胜负场分,那么这个队胜负场 数应数应分别是多少?分别是多少?设篮球队胜了设篮球队胜了x场场,负了负了y场场.根据题意得方程组根据题意得方程组xy=222xy=40解解:设胜设胜x x场场,则负则负(22-x)(22-x)场场,根据题意得方程根据题意得方程 2x+(22-x)=40 解得解得 x=18 22-18=4答答:这个队胜这个

5、队胜1818场场,只负只负4 4场场.由由得,得,y=4把把 代入代入,得,得2x+(22-x)=40解这个方程,得解这个方程,得x=18把把 x=18 代入代入,得,得所以这个方程组的解是所以这个方程组的解是y=22xx=18y=4.这样的形式这样的形式叫做叫做“用用 x 表示表示 y”.记记住啦!住啦!上面的解方程组的基本思路是什么上面的解方程组的基本思路是什么?基本步骤有哪些?基本步骤有哪些?上面解方程组的基本思路是上面解方程组的基本思路是“消元消元”把把“二元二元”变为变为“一元一元”。主要步骤是:将其中的主要步骤是:将其中的一个方程中的某个一个方程中的某个未知数用含有另一个未知数的代

6、数式表现未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一出来,并代入另一个方程中,从而消去一个未知数个未知数,化二元一次方程组为一元一次,化二元一次方程组为一元一次方程。这种解方程组的方法称为方程。这种解方程组的方法称为代入消元代入消元法法,简称,简称代入法代入法。归纳归纳 例例1 用代入法解方程组用代入法解方程组 xy=3 3x8y=14 例题分析例题分析解解:由由得得 x=y+3 解这个方程得解这个方程得:y=-1把把代入代入得得 3(y+3)8y=14 把把y=-1代入代入得得:x=2所以这个方程组的解为所以这个方程组的解为:y=1x=2 例例1 用代入法解方程组

7、用代入法解方程组 xy=3 3x8y=14 例题分析例题分析解解:由由得得 y=x3 解这个方程得解这个方程得:x=2把把代入代入得得 3x8(x3)=14 把把x=2代入代入得得:y=1所以这个方程组的解为所以这个方程组的解为:y=1x=2试一试:用代入法解 二元一次方程组 最为简单的方法是将最为简单的方法是将_式中的式中的_表示为表示为_,再代入再代入_ xX=6-5y例例2 解方程组解方程组3x 2y=192x+y=1解:解:3x 2y=192x+y=1由由得:得:y=1 2x把把代入代入得:得:3x 2(1 2x)=193x 2+4x=193x+4x=19+27x=21x=3把把x=3

8、代入代入,得,得y=1 2x=1-23=-5x=3y=-51、将方程组里的一个方程变形,、将方程组里的一个方程变形,用含有一个未知数的一次式表示用含有一个未知数的一次式表示另一个未知数另一个未知数(变形)变形)2、用这个一次式代替另一个、用这个一次式代替另一个方程中相应的未知数,得到一方程中相应的未知数,得到一个一元一次方程,求得一个未个一元一次方程,求得一个未知数的值知数的值(代入(代入求解求解)3、把这个未知数的值再代入、把这个未知数的值再代入一次式,求得另一个未知数的一次式,求得另一个未知数的值值(再代再代求解)求解)4、写出方程组的解、写出方程组的解(写解)(写解)用代入法解二元一次用

9、代入法解二元一次方程组的一般步骤方程组的一般步骤1、解二元一次方程组、解二元一次方程组 x+y=5 x-y=1 2x+3y=40 3x-2y=-5 2、已知(、已知(2x+3y-4)+x+3y-7=0则则x=,y=。-3103、若方程、若方程是关于是关于x、y的二元一次方程,的二元一次方程,求求 的值。的值。做一做做一做v4、如图所示,将长方形的一个、如图所示,将长方形的一个角折叠,折痕为,角折叠,折痕为,BAD比比 BAE大大48.设设 BAE和和 BAD的度数分别为的度数分别为x,y度,度,那么那么x,y所适合的一个方程组是()所适合的一个方程组是()ABCDC探究:对于探究:对于x+2y

10、=5,思考下列问题思考下列问题:()()用用含含y的式子表示的式子表示x;()用含()用含x的式子表示的式子表示y;x=1y=2x=3y=1x=5y=0()在自然数范围内方程的解是()在自然数范围内方程的解是v探究:探究:列出二元一次方程组列出二元一次方程组,并根据问题的并根据问题的实际意义找出问题的解实际意义找出问题的解.v 已知钢笔每只已知钢笔每只5元元,圆珠笔每只圆珠笔每只2元元,小明用小明用16元钱买了这两种笔共元钱买了这两种笔共5支支,试求小明买钢笔和试求小明买钢笔和圆珠笔各多少支圆珠笔各多少支?解解:设小明买钢笔设小明买钢笔x支支,买圆珠笔买圆珠笔y支,根据题意列出方程组得支,根据

11、题意列出方程组得X+y=55x+2y=16因为因为x和和y只能取正整数,所以观察方程组得此方程组的只能取正整数,所以观察方程组得此方程组的解是解是X=2Y=3例题分析例题分析分析:问题包含两个条件分析:问题包含两个条件(两个相等关系两个相等关系):大瓶数大瓶数:小瓶数小瓶数2:5即即5大瓶数大瓶数=2小瓶数小瓶数大瓶装的消毒液小瓶装的消毒液总生产量大瓶装的消毒液小瓶装的消毒液总生产量例例3 根据市场调查,某消毒液的大瓶装根据市场调查,某消毒液的大瓶装(500g)和小瓶装和小瓶装(250g),两种产品的销售,两种产品的销售数量的比数量的比(按瓶计算按瓶计算)是是2:5某厂每天生产某厂每天生产这种

12、消毒液这种消毒液22.5吨,这些消毒液应该分装吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?大、小瓶装两种产品各多少瓶?5x=2y500 x+250y=22 500 000500 x+250 x=22 500 000y=x解:设解:设这些消毒液应该分装这些消毒液应该分装x大瓶大瓶,y小瓶小瓶,根据题意得方程根据题意得方程由由得得把把代入代入得得 解这个方程得解这个方程得:x=20 000把把x=20 000代入代入得得:y=50 000所以这个方程组的解为所以这个方程组的解为:y=50 000 x=20 000答答这些消毒液应该分装这些消毒液应该分装20 000大瓶大瓶,50 000小瓶小

13、瓶,二二元元一一次次方方程程组组5x=2y500 x+250y=22 500 000y=50 000X=20 000解得解得x变形变形解得解得y代入代入消消y归纳总结归纳总结上面解方程组的过程可以用下面的框图表示上面解方程组的过程可以用下面的框图表示:一元一次方程一元一次方程500 x+250 x=22500000y=x用用 x代替代替y,消未知数消未知数y解这个方程组,可以先消解这个方程组,可以先消 x吗吗?x+y=222x+y=402x+(22-x)=40第一个方程第一个方程x+y=22说明说明y=22-x将第二个方将第二个方程程2x+y=40的的y换成换成22-x解得解得x=18代入代入

14、y=22-x得得y=4y=4x=18思考思考:从从到到达到了什么目的达到了什么目的?怎样达到的怎样达到的?x+y=222x+y=402x+(22-x)=40这节课你有哪些收获这节课你有哪些收获?1、将方程组里的一个方程变形,用含、将方程组里的一个方程变形,用含有一个未知数的一次式表示另一个未知有一个未知数的一次式表示另一个未知数数(变形)变形)2、用这个一次式代替另一个方程中的、用这个一次式代替另一个方程中的相应未知数,得到一个一元一次方程,相应未知数,得到一个一元一次方程,求得一个未知数的值求得一个未知数的值(代入)(代入)3、把这个未知数的值代入一次式,求得、把这个未知数的值代入一次式,求得另一个未知数的值另一个未知数的值(再代)(再代)4、写出方程组的解、写出方程组的解(写解)(写解)用代入法解二元一次用代入法解二元一次方程组的一般步骤方程组的一般步骤解二元一次解二元一次方程组方程组用代入法用代入法

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服