ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:278.51KB ,
资源ID:5444560      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5444560.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(随机变量及分布列电子教案.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

随机变量及分布列电子教案.ppt

1、2.1.1离散型随机变离散型随机变量的分布列量的分布列高二数学高二数学 选修选修2-3Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.引例:引例:(1)抛掷一枚骰子,可能出现的点数有几种情况?)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球)姚明罚球2次有可能得到的分数有几种情况?次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试

2、验开始之前,你能确定结果是哪一思考:在上述试验开始之前,你能确定结果是哪一 种情况吗?种情况吗?1,2,3,4,5,60分分,1分分,2分分正面向上,反面向上正面向上,反面向上能否把掷硬能否把掷硬币的结果也币的结果也用数字来表用数字来表示呢?示呢?分析:不行,虽然我们能够事先知道随机试验可能出分析:不行,虽然我们能够事先知道随机试验可能出现的现的所有所有结果,但在一般情况下,试验的结果是随机出结果,但在一般情况下,试验的结果是随机出现的。现的。Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.

3、0.Copyright 2004-2011 Aspose Pty Ltd.在前面的例子中,我们把随机试验的每一个结果在前面的例子中,我们把随机试验的每一个结果都用一个确定的数字来表示,这样试验结果的变化就都用一个确定的数字来表示,这样试验结果的变化就可看成是这些数字的变化。可看成是这些数字的变化。若把这些数字当做某个变量的取值,则这个变量若把这些数字当做某个变量的取值,则这个变量就叫做就叫做随机变量随机变量,常用,常用X、Y、x x、h h 来表示。来表示。一、随机变量的概念:一、随机变量的概念:Evaluation only.Created with Aspose.Slides for.NE

4、T 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.按照我们的定义,所谓的随机变量,就是随机试验按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。那么,随机变量的试验结果与实数之间的一个对应关系。那么,随机变量与函数有类似的地方吗?与函数有类似的地方吗?随机变量是试验结果与实数的一种对应关系,而随机变量是试验结果与实数的一种对应关系,而函数是实数与实数的一种对应关系,它们都是一种映射函数是实数与实数的一种对应关系,它们都是一种映射 在这两种映射之间,在这两种映射之间,试验结果的范围相当于函

5、数的定义域,试验结果的范围相当于函数的定义域,随机变量的取值结果相当于函数的值域。随机变量的取值结果相当于函数的值域。所以我们也把随机变量的取值范围叫做随机变量的值域。所以我们也把随机变量的取值范围叫做随机变量的值域。Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.例例1、一个袋中装有、一个袋中装有5个白球和个白球和5个黑球,若从中任取个黑球,若从中任取3个,个,则其中所含白球的个数则其中所含白球的个数X就就是一个随机

6、变量,求是一个随机变量,求X的取值的取值范围,并说明范围,并说明X的不同取值所表示的事件。的不同取值所表示的事件。解:解:X的取值范围是的取值范围是 0,1,2,3 ,其中,其中 X=0表示的事件是表示的事件是“取出取出0个白球,个白球,3个黑球个黑球”;X=1表示的事件是表示的事件是“取出取出1个白球,个白球,2个黑球个黑球”;X=2表示的事件是表示的事件是“取出取出2个白球,个白球,1个黑球个黑球”;X=3表示的事件是表示的事件是“取出取出3个白球,个白球,0个黑球个黑球”;变题:变题:X 3在这里又表示什么事件呢?在这里又表示什么事件呢?“取出的取出的3个球中,白球不超过个球中,白球不超

7、过2个个”Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.写出下列各随机变量可能的取值,并说明它们各自写出下列各随机变量可能的取值,并说明它们各自所表示的随机试验的结果:所表示的随机试验的结果:(1)从)从10张已编号的卡片(从张已编号的卡片(从1号到号到10号)中任取号)中任取1张,张,被取出的卡片的号数被取出的卡片的号数x x;(2)抛掷两个骰子,所得点数之和)抛掷两个骰子,所得点数之和Y;(3)某城市)某城市1天

8、之中发生的火警次数天之中发生的火警次数X;(4)某品牌的电灯泡的寿命)某品牌的电灯泡的寿命X;(5)某林场树木最高达)某林场树木最高达30米,最低是米,最低是0.5米,则此林场米,则此林场 任意一棵树木的高度任意一棵树木的高度x x(x x=1、2、3、10)(Y=2、3、12)(X=0、1、2、3、)0,+)0.5,30思考:前思考:前3个随机变量与最后两个有什么区别?个随机变量与最后两个有什么区别?Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011

9、 Aspose Pty Ltd.二、随机变量的分类:二、随机变量的分类:1、如果可以按一定次序,把随机变量可能取的值一一、如果可以按一定次序,把随机变量可能取的值一一 列出,那么这样的随机变量就叫做列出,那么这样的随机变量就叫做离散型随机变量离散型随机变量。(如掷骰子的结果,城市每天火警的次数等等)(如掷骰子的结果,城市每天火警的次数等等)2、若随机变量可以取某个区间内的一切值,那么这样的、若随机变量可以取某个区间内的一切值,那么这样的 随机变量叫做随机变量叫做连续型随机变量连续型随机变量。(如灯泡的寿命,树木的高度等等)(如灯泡的寿命,树木的高度等等)注意:注意:(1)随机变量不止两种,我们

10、只研究离散型随机变量;)随机变量不止两种,我们只研究离散型随机变量;(2)变量离散与否)变量离散与否,与变量的选取有关;与变量的选取有关;比如:对灯泡的寿命问题,可定义如下离散型随机变量比如:对灯泡的寿命问题,可定义如下离散型随机变量Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.下列试验的结果能否用离散型随机变量表示?下列试验的结果能否用离散型随机变量表示?(1)已知在从汕头到广州的铁道线上,每隔)已知在从汕头到广州

11、的铁道线上,每隔50米有一个米有一个 电线铁站,这些电线铁站的编号;电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有)任意抽取一瓶某种标有2500ml的饮料,其实际量的饮料,其实际量 与规定量之差;与规定量之差;(3)某城市)某城市1天之内的温度;天之内的温度;(4)某车站)某车站1小时内旅客流动的人数;小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格)在优、良、中、及格、不及格5个等级的测试中,个等级的测试中,某同学可能取得的等级。某同学可能取得的等级。Evaluation only.Cr

12、eated with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.若用若用X表示抛掷一枚质地均匀的骰子所得的点数,表示抛掷一枚质地均匀的骰子所得的点数,请把请把X取不同值的概率填入下表,并求判断下列事件发生取不同值的概率填入下表,并求判断下列事件发生的概率是多少?的概率是多少?(1)X是偶数是偶数;(;(2)X3;X123456P解:解:P(X是偶数是偶数)=P(X=2)+P(X=4)+P(X=6)P(X3)=P(X=1)+P(X=2)Evaluation only.Cr

13、eated with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.三、离散型随机变量的分布列:三、离散型随机变量的分布列:一般地,若离散型随机变量一般地,若离散型随机变量X 可能取的不同值为:可能取的不同值为:x1,x2,xi,xnX取每一个取每一个xi(i=1,2,n)的概率的概率P(X=xi)=Pi,则称表:,则称表:Xx1x2xiPP1P2Pi为离散型随机变量为离散型随机变量X的的概率分布列概率分布列,简称为,简称为X的分布列的分布列.有时为了表达简单,也用等式有时

14、为了表达简单,也用等式 P(X=xi)=Pi i=1,2,n来表示来表示X的分布列的分布列Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.离散型随机变量的分布列应注意问题:离散型随机变量的分布列应注意问题:Xx1x2xiPP1P2Pi1、分布列的构成:、分布列的构成:(1)列出了离散型随机变量)列出了离散型随机变量X的所有取值;的所有取值;(2)求出了)求出了X的每一个取值的概率;的每一个取值的概率;2、分布列的性质、

15、分布列的性质:Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.求离散型随机变量分布列的基本步骤:求离散型随机变量分布列的基本步骤:(1)确定随机变量的所有可能的值)确定随机变量的所有可能的值xi(2)求出各取值的概率)求出各取值的概率P(X=xi)=pi(3)列出表格)列出表格定值定值 求概率求概率 列表列表说明:在写出说明:在写出X的分布列后,要及时检查所有的的分布列后,要及时检查所有的概率之和是否为概率之和是否为1

16、 Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.例例3、袋子中有、袋子中有3个红球,个红球,2个白球,个白球,1个黑球,这些球个黑球,这些球除颜色外完全相同,现要从中摸一个球出来,若摸到除颜色外完全相同,现要从中摸一个球出来,若摸到黑球得黑球得1分,摸到白球得分,摸到白球得0分,摸到红球倒扣分,摸到红球倒扣1分,试写分,试写出从该盒内随机取出一球所得分数出从该盒内随机取出一球所得分数X的分布列的分布列.解:因为只取解

17、因为只取1球,所以球,所以X的取值只能是的取值只能是1,0,-1从袋子中随机取出一球所得分数从袋子中随机取出一球所得分数X的分布列为:的分布列为:X10-1PEvaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.例例4:一个口袋有:一个口袋有5只同样大小的球,编号分别为只同样大小的球,编号分别为1,2,3,4,5,从中同时取出,从中同时取出3只,以只,以X表示取出的球最小的表示取出的球最小的号码,求号码,求X的分布列。的分

18、布列。解:因为同时取出解:因为同时取出3个球,故个球,故X的取值只能是的取值只能是1,2,3当当X=1时,其他两球可在剩余的时,其他两球可在剩余的4个球中任选个球中任选 故其概率为故其概率为当当X=2时,其他两球的编号在时,其他两球的编号在3,4,5中选,中选,故其概率为故其概率为当当X=3时,只可能是时,只可能是3,4,5这种情况,这种情况,概率为概率为Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.X123P随机变

19、量随机变量X的分布列为的分布列为例例4:一个口袋有:一个口袋有5只同样大小的球,编号分别为只同样大小的球,编号分别为1,2,3,4,5,从中同时取出,从中同时取出3只,以只,以X表示取出的球最小的表示取出的球最小的号码,求号码,求X的分布列。的分布列。Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.例5:某某一一射手射击所得环数射手射击所得环数 的分布列如下的分布列如下:45678910P0.020.040.060.0

20、90.280.290.22求此求此射手射手”射击一次命中环数射击一次命中环数7”7”的概率的概率.分析分析:”射击一次命中环数射击一次命中环数7”7”是指互斥事是指互斥事件件”=7”,”=8”,”=9”,”=7”,”=8”,”=9”,”=10”=10”的和的和.性质性质3 3:离散型随机变量在某一范围内取值的概率等于在这一范围内取每一:离散型随机变量在某一范围内取值的概率等于在这一范围内取每一个值的概率之和个值的概率之和Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright

21、2004-2011 Aspose Pty Ltd.课堂练习:课堂练习:0.30.16P3210-12、若随机变量、若随机变量的分布列如下表所示,则常数的分布列如下表所示,则常数a=_CEvaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.小结:小结:一、随机变量的定义:一、随机变量的定义:二、随机变量的分类:二、随机变量的分类:三、随机变量的分布列:三、随机变量的分布列:1、分布列的性质、分布列的性质:2、求分布列的步骤、求分布列的步骤:定值定值 求概率求概率 列表列表Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.作业:作业:课时练课时练P30-32、作业(十)、作业(十)Evaluation only.Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.Copyright 2004-2011 Aspose Pty Ltd.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服