ImageVerifierCode 换一换
格式:PPT , 页数:24 ,大小:889KB ,
资源ID:5438741      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5438741.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(深度学习基础理论(课堂PPT).ppt)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

深度学习基础理论(课堂PPT).ppt

1、深度学习入门理论1主要内容人脑视觉机理1关于特征2深度学习思想3训练过程45常用模型2人脑视觉机理 人的视觉系统的信息处理是分级的,神经-中枢-大脑的工作过程是一个不断迭代、不断抽象的过程。3目前我们通过机器学习去解决这些问题的思路都是这样的(以视觉感知为例):4关于特征 特征是机器学习系统的原材料。如果数据被很好的表达成了特征,通常线性模型就能达到满意的精度。对于特征,我们需要考虑四个方面:1、特征表示的粒度、特征表示的粒度2、初级(浅层)特征表示、初级(浅层)特征表示3、结构性特征表示、结构性特征表示4、需要有多少个特征、需要有多少个特征5关于特征1、特征表示的粒、特征表示的粒度度 学习算

2、法在一个什么粒度上的特征表示,才有能发挥作用?6关于特征2、初级(浅层)特、初级(浅层)特征表示征表示 像素级的特征表示方法没有作用,那怎样的表示才有用呢?7关于特征3、结构性特征表示、结构性特征表示 小块的图形可以由基本edge构成,更结构化,更复杂的,具有概念性的图形如何表示呢?8关于特征 在不同对象上做训练时,所得的边缘基底 是非常相似的,但对象部分和模型 就会完全不同了。9关于特征4、需要有多少个、需要有多少个特征特征 我们知道需要层次的特征构建,由浅入深,但每一层该有多少个特征呢?10深度学习思想 对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,并且使得输入与输出的

3、差别尽可能地小,就可以实现对输入信息进行分级表达了。深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。11深度学习训练过程1)使用自下上升非监督学习 从底层开始,一层一层的往顶层训练,采用无标定数据(有标定数据也可)分层训练各层参数。2)自顶向下的监督学习就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调,基于第一步得到的各层参数进一步微调整个多层模型的参数,这一步是一个有监督训练过程12深度学习的常用模型1、AutoEncoder自动编码器自动编码器自动编码器就是一

4、种尽可能复现输入信号的神经网络。具体过程简单的说明如下:1)给定无标签数据,用非监督学习学习特征:)给定无标签数据,用非监督学习学习特征:13AutoEncoder自动编码器自动编码器通过调整encoder和decoder的参数,使得重构误差最小,这时候我们就得到了输入input信号的第一个表示了,也就是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。14AutoEncoder自动编码器自动编码器2)通过编码器产生特征,然后训练下一层。这样逐层训)通过编码器产生特征,然后训练下一层。这样逐层训练:练:将第一层输出的code当成第二层的输入信号,同样最小化重构误差

5、就会得到第二层的参数,并且得到第二层输出的code,也就是原输入信息的第二个表达了。其他层就用同样的方法炮制。15AutoEncoder自动编码器自动编码器3)有监督微调:)有监督微调:到这里,这个AutoEncoder还不能用来分类数据,可以在AutoEncoder的最顶的编码层添加一个分类器,然后通过标准的多层神经网络的监督训练方法(梯度下降法)去训练。微调分为两种,一个是只调整分类器(黑色部分):16AutoEncoder自动编码器自动编码器另一种:通过有标签样本,微调整个系统:在研究中可以发现,如果在原有的特征中加入这些自动学习得到的特征可以大大提高精确度,甚至在分类问题中比目前最好

6、的分类算法效果还要好!17AutoEncoder自动编码器自动编码器AutoEncoder存在的一些变体:a)Sparse AutoEncoder稀疏自动编码器稀疏自动编码器b)Denoising AutoEncoders降噪自动编码器降噪自动编码器18深度学习的常用模型2、Sparse Coding稀疏编码稀疏编码将一个信号表示为一组基的线性组合,而且要求只需要较少的几个基就可以将信号表示出来。稀疏编码算法是一种无监督学习方法,它用来寻找一组“超完备”基向量来更高效地表示样本数据。目标函数:Min|I O|+u*(|a1|+|a2|+|an|)19Sparse Coding稀疏编码稀疏编码2

7、0Sparse Coding稀疏编码稀疏编码Sparse coding分为两个部分:1)Training阶段:阶段:给定一系列的样本图片x1,x 2,,我们需要学习得到一组基1,2,,也就是字典。训练过程就是一个重复迭代的过程,交替更改a和使得下面这个目标函数最小。21Sparse Coding稀疏编码稀疏编码2)Coding阶段:阶段:给定一个新的图片x,由上面得到的字典,通过解一个LASSO问题得到稀疏向量a。这个稀疏向量就是这个输入向量x的一个稀疏表达了。22深度学习的常用模型3、Restricted Boltzmann Machine(RBM)限制波尔兹曼机限制波尔兹曼机4、Deep Belief Networks深信度网络深信度网络5、Convolutional Neural Networks卷积卷积神经网络神经网络23谢谢谢谢欢迎您的批评与建议欢迎您的批评与建议24

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服