ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:207.42KB ,
资源ID:526364      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/526364.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(变指标有界变差空间的准紧集.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

变指标有界变差空间的准紧集.pdf

1、第 43 卷第 2 期2023 年 6 月数学理论与应用MATHEMATICAL THEORY AND APPLICATIONSVol.43No.2Jun.2023Precompact Sets in Variable Exponent Bounded Variation SpacesSi YananXu Jingshi*(School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China)AbstractBy equivariated sets,w

2、e consider sufficient conditions for precompact sets in variable exponent Banachspacevalued bounded Wiener variation spaces and bounded Riesz variation spaces in univariate and bivariate cases,respectively.Key wordsPrecompact setBounded variation spaceVariable exponentBanach spacevalued变指标有界变差空间的准紧集

3、司亚楠徐景实*(桂林电子科技大学数学与计算科学学院,桂林,541004)摘要本文利用等度变差集,考虑单变量和双变量情形下变指标 Banach 空间值的有界 Wiener 变差空间和有界 Riesz 变差空间中准紧集的充分条件.关键词准紧集有界变差空间变指标Banach 空间值doi:10.3969/j.issn.1006 8074.2023.02.0081IntroductionIn 1881,Jordan started the study of univariate functions of bounded variation in 1.Subsequently,some generali

4、zed bounded variation spaces are investigated,including the bounded Wiener variationspaces 2,the bounded Young variation spaces 3,etc.For univariate functions of bounded variation,a very comprehensive overview about the basic nations and properties of classical and nonclassicalfunctions of bounded v

5、ariation and their various generalizations may be found in 4,5.The boundedvariation functions have been extensively applied also in other fields,for instance,variations calculus,convergence of Fourier series,geometric measure theory,mathematical physics,etc.Indeed,Chistyakovconsidered superposition

6、operators on bivariate or multivariate functions of bounded variation in 6,7respectively.Verma and Viswanathan studied the Hausdorff dimension and box dimension of bivariatecontinuousfunctionofboundedvariationin8.LindconsideredtheFubinitypepropertiesofthebivariateThis work is supported by National N

7、atural Science Foundation of China(No.12161022)Corresponding author:Xu Jingshi(1966 ),Associate Professor,PhD Email:收稿日期:2023 年 4 月 20 日108数学理论与应用bounded pvariation functions spaces in 9.The application of bivariate regular variation in insurance andfinancial risks was given in 10,11.Variable expone

8、nt function spaces have been developed quickly in the last decades due to theirapplications in many fields,such as in nonlinear elastic mechanics 12,electrorheological fluids 13,image restoration 1219 and differential equations in nonstandard growth 20,21,22.In particular,Castillo,Merentes and Rafei

9、ro introduced bounded Wiener variation spaces with pvariable and studiedsome of their basic properties in 23.Then Castillo,Guzmna and Rafeiro obtained some embeddingresults of variable exponent bounded Riesz variation spaces in 24.The compactness problem of bounded variation spaces seems to be far f

10、rom being fully resolved.Indeed,Ciemnoczolowski and Orlicz gave some results on the relative compactness(especially compactembedding)of the bounded Wiener variation and bounded Young variation space in 25.A weakcompactness criterion for bounded variation space was given in 26.In 27,the authors gavec

11、haracterizations for precompact subsets of the Banach space of continuous functions that are continuousin variation.A characterization of compactness in the Banach space of continuous functions that arecontinuous in variation was also given in 28 by Bernstein polynomials.Bugajewski and Gulgowskiprov

12、ided a compactness criterion for bounded Jordan variation spaces in 29.Inspired by 29,we willgive sufficient conditions for precompact sets in variable bounded variation spaces.In Section 2,we willconsiderBanachspacevaluedunivariatevariableboundedvariationspaces,includingtheWienervariationand the Ri

13、esz variation spaces.Their bivariate cases will be given in Section 3.In the remainder of this section we state some preliminaries.Definition 1.1Let X be a vector space over K.A function on X is called a convexpseudomodular if(i)(0)=0(ii)(x)=(x),for any x X,and K with|=1(iii)is convex(iv)lim0 0:(f)1

14、.The following lemma is well known,see Lemma 2.1.14 and Corollary 2.1.15 in 20.Lemma 1.1Let X be a vector space,be a convex pseudomodular on X and f X.Then,(i)(f)1 if and only if f 1(ii)if f 1,then(f)f.变指标有界变差空间的准紧集109Definition 1.2A subset in a topological space is precompact if its closure is comp

15、act.A subset Wis totally bounded in a metric space X if for each 0 there exist finite elements x1,xm in Wsuch that W mi=1B(xi,),where B(x,r)is a ball in X with center at x and radius.It is well known that precompactness is equivalent to total boundedness in a complete metric spacedue to Hausdorff.In

16、 the sequel,we let(E,)be a Banach space.2Univariate variable bounded variation spacesLet us denote 0,1 as I.We call a function p():I (0,)variable exponent.Let p+=p+I:=esssupxIp(x)and p=pI:=essinfxIp(x).We denote the set of all variable exponents with0 p p+as P(I),and the tagged partition of I as :0=

17、t0 t1 tn=1 with a finitesequence x0,x1,xn1,satisfying ti xi ti+1for each i.2.1Variable bounded Wiener variation function spacesFor a bounded function f:I E,we definep()E(f,)=ni=1f(ti)f(ti1)p(xi1),andp()E(f)=supni=1f(ti)f(ti1)p(xi1),where the supremum is taken on all partitions of I.Definition 2.1We

18、define the space of functions of p()bounded variation byBVp()(I,E):=f:I E;f(0)=0 and fBVp()(I,E)0:p()E(f)1.Proposition 2.1Let p()P(I).Then p()Eis a convex pseudomodular.The proposition and proof is similar to properties of the variable bounded variation of scalar settingin 24.Theorem 2.1Let p()P(I).

19、Then BVp()(I,E)is a Banach space.Proof Let fuuNbe a Cauchy sequence in BVp()(I,E).Then for any (0,1),there existsN N,such thatfu fvBVp()(I,E)110数学理论与应用for all u,v N.By Lemma 1.1,we have that p()E(fu fv).We claim that there exists f BVp()(I,E),such that fu fBVp()(I,E).In deed,for fixed t I(fu fv)(t)p

20、(t)max1,2p+1(fu fv)(t)(fu fv)(0)p(t)+(fu fv)(1)(fu fv)(t)p(t)max1,2p+1 p()E(fu fv)max1,2p+1.Since E is a Banach space,then the sequence fu(t)uNhas a pointwise limit,denoted by f(t),i.e.,f(t)=limvfv(t)for each t I.Since for all partitions of Ini=1(fu fv)(ti)(fu fv)(ti1)p(xi1)N,letting v ,we obtainni=

21、1(fu f)(ti)(fu f)(ti1)p(xi1),u N,which implies thatp()E(fu f1/p)1.Then by Definition 2.1,fu fBVp()(I,E)1/p,for u N.ThereforefBVp()(I,E)fu fBVp()(I,E)+fuBVp()(I,E)0 there exists a partition of I,such that for every f Ap()E(f)+p()E(f,).The following set is a nontrivial example which is equivariated.Ex

22、ample 2.1Let p0(1,),E=Lp00,1,and p(x)p0.For any f Lp00,1,let xf(s)=f(s)0,s(s).Then for any partition :0=t0 t1 0,there exists a partition:0=t0 t1 tn=1,and xi ti,ti+1,i=0,1,n 1,such thatp()E(f g)13 2kp+p()E(f g,).Let Yi=f(ti):f A,i=0,1,2,n.Then by the condition(ii),Yiis a precompactsubset of E.Denote

23、Y=Y0 Y1 Yn,then Y is a totally bounded set in En+1,wherefor any =(0,1,n)En+1,En+1=ni=0maxip(xi1),ip(xi).Let W=f(t0),f(t1),f(tn):f A.Then W Y,and W is totally bounded.Hence there existsh1,hN A,such that jNj=1 W,where j=(hj(t0),hj(t1),hj(tn)is a finitenet of W.Thus for each f A,there exists some j suc

24、h thatni=0maxf(ti)hj(ti)p(xi1),f(ti)hj(ti)p(xi)13 2kp+p+1.Thenp()E(f hj)13 2kp+ni=1(f hj)(ti)(f hj)(ti1)p(xi1)13 2kp+2p+1ni=0(f hj)(ti)p(xi1)+2p+1ni=0(f hj)(ti1)p(xi1)13 2kp+13 2kp+13 2kp+=12kp+.By p()E(2f)2p+p()E(f),we havep()E(f hj)=p()E(2k(f hj)2kp+p()E(f hj)=1.Then by Definition 2.1,we obtain f

25、hjBVp()(I,E).Therefore,A is totally bounded,i.e.,precompact.The proof is complete.112数学理论与应用Remark 2.1The condition(i)of Theorem 2.2 is not necessary.Let p(x)2 and E=R.For eacht 0,1,let x(t)=t,y(t)=t2.Then x,y 20,1.Let A=0,x,y,then A is a precompact set.But the set A A is not equivariated.We know th

26、at2(x,I)=|x(1)x(0)|2=1.Because for each partition 0=t0 t1 t2=1,we have|x(t1)x(t0)|2+|x(t2)x(t1)|2|x(1)x(0)|2=1.Then the variation becomes smaller when the partition points are added.Sincex(t)y(t)=t t2,and|x(1)y(1)|=|x(0)y(0)|=0,then for the partition 0:0,1/2,1,we have2(x y,0)=|x(1)y(1)(x(1/2)y(1/2)|

27、2+|x(1/2)y(1/2)(x(0)y(0)|2=18.In order to approximate the value of 2(x,)to that of 2(x,I),the partition can only be 0=t0t1 t2 t3=1,and t1approaches to 0,t3to 1,but 2(x y,)0,therefore,x and x y are notequivariated.Remark 2.2Condition(ii)of Theorem 2.2 is necessary.Fix t I,let(f)=f(t),f BVp()(I,E).The

28、n :BVp()(I,E)E is a continuous function.Because for each f,g BVp()(I,E),(f)(g)=f(t)f(t)=f(0)g(0)+f(t)g(t)(f(0)g(0)=(f(t)g(t)(f(0)g(0)p(x)1p(x)maxp()E(f g)1p,p()E(f g)1p+,where x (0.t).If f gBVp()(I,E)0,then(f)(g)0.In fact,if f gBVp()(I,E)1,then1 p()E(f gf gBVp()(I,E)(1f gBVp()(I,E)p p()E(f g).变指标有界变

29、差空间的准紧集113Thus p()E(f g)f gpBVp()(I,E).Hencemaxp()E(f g)1p,p()E(f g)1p+maxf gBVp()(I,E),f gpp+BVp()(I,E)=f gpp+BVp()(I,E).Therefore,for each t I,f(t):f A is a precompact set.Corollary 2.1Let p()P(I).A set A BVp()(I,K)is precompact,if the following conditionsare satisfied:(i)the set A is bounded(ii)t

30、he set A A is equivariated.Since for each t I,A is bounded,then the set f(t):f A is bounded in K,therefore,precompact in K,which is a direct result of Theorem 2.2.Corollary 2.1 is a generalization of results onthe criterion of precompactness for the constant exponent scalar setting in 30.2.2Variable

31、 bounded Riesz variation spacesDefinition 2.3Let =0=t0 t1 tn=1 be a partition of I and p()P(I).Wedefine the functional p()R,E()byp()R,E(f)=supp()R,E(f,)=supni=1f(ti)f(ti1)p(xi1)(ti ti1)p(xi1),forf:I E,where the finite sequence x0,xn1satisfies that for each i,ti xi ti+1.Then the space ofbounded p()va

32、riation in Riesz sense is defined asRBVp()(I,E):=f:p()R,E(f)0:f(0,0)=0 and p()R,E(f)1.Theorem 2.3Let p()P(I).Then RBVp()(I,E)is a Banach space.The proof is similar to that of Theorem 2.1 or Theorem 3.3 in 24,and is omitted here.Definition 2.4Let p()P(I).A set A RBVp()(I,E)is said to be equivariated,

33、if for each 0 there exists a partition of I,such that for every f Ap()R,E(f)+p()R,E(f,).114数学理论与应用Theorem2.4Letp()P(I).AsetA RBVp()(I,E)isprecompact,ifthefollowingconditionsare satisfied:(i)set A A is equivariated(ii)for every t I,f(t):f A is a precompact set.Proof Let =2k,k N.By condition(i),for ev

34、ery f,g A and 0,there exists a partition:0=t0 t1 tn=1,and xi ti,ti+1,i=0,1,n 1,such thatp()R,E(f g)13 2kp+p()R,E(f g,).Similar to the proof of Theorem 2.2,for each En+1,letEn+1=ni=0imaxip(xi1),ip(xi),i=max(ti ti1)1p(xi1),(ti+1 ti)1p(xi),i=1,n,and 0=(t1 t0)p(x0).Then bycondition(ii),for each f A ther

35、e exists some j such thatni=0imaxf(ti)hj(ti)p(xi1),f(ti)hj(ti)p(xi)13 2kp+p+1.Thenp()R,E(f hj)13 2kp+ni=1(f hj)(ti)(f hj)(ti1)p(xi1)(ti ti1)p(xi1)113 2kp+2p+1ni=0i(f hj)(ti)p(xi1)+2p+1ni=0i1(f hj)(ti1)p(xi1)13 2kp+13 2kp+13 2kp+=12kp+.By p()R,E(2f)2p+p()R,E(f),we havep()R,E(f hj)=p()R,E(2k(f hj)2kp+

36、p()R,E(f hj)=1.ThenbyDefinition2.4,weobtainfhjRBVp()(I,E).ThusAisprecompact.Theproofiscomplete.Similar to Corollary 2.1,we have the following corollary.变指标有界变差空间的准紧集115Corollary2.2Letp()P(I).AsetA RBVp()(I,K)isprecompact,ifthefollowingconditionsare satisfied:(i)the set A is bounded(ii)the set A A is

37、 equivariated.3Bivariate variable bounded variation spacesFor any function p(,):I I (0,),define p+,pand P(I I)similarly to the variate case asin Section 2.By using the same methods in Section 2,we extend results for univariate spaces to bivariatespaces.For the readers convenience,we give their proof

38、s in detail below.3.1Bivariate variable bounded Wiener variation spacesFor any bivariate bounded function f:I I E,and finite partitions :0=t0 t1 tn=1 and:0=s0 s1 sm=1 of interval I,letp(,)E(f,):=mj=1ni=1f(ti,sj)f(ti,sj1)f(ti1,sj)+f(ti1,sj1)p(ti,sj),andp(,)E(f):=supmj=1ni=1f(ti,sj)f(ti,sj1)f(ti1,sj)+

39、f(ti1,sj1)p(ti,sj),where the supremum is taken on all partitions and of I.Definition 3.1We define the space of functions of p(,)bounded variation byBVp(,)(I I,E):=f:I I E:f(0,0)=0 and fBVp(,)(II,E)0:f(0,0)=0 and p(,)E(f)1.Theorem 3.1Let p(,)P(I I).Then BVp(,)(I I,E)is a Banach space.Proof Let fuuNbe

40、 a Cauchy sequence in BVp(,)(II,E).Then for any (0,1),there existsN()such that fu fv N(),hence by Lemma 1.1,we have p(,)E(fu fv).Therefore,for fixed t,s,we obtain that(fu fv)(t,s)p(t,s)max1,2p+1(fu fv)(t,s)(fu fv)(0,0)p(t,s)+(fu fv)(1,1)(fu fv)(t,s)p(t,s)max1,2p+1.116数学理论与应用Since E is complete,the l

41、imit limufu(t,s)exists for all t,s I.Denote the limit by f(t,s).Thenfor all partitions,mj=1ni=1(fu fv)(ti,sj)(fu fv)(ti,sj1)(fu fv)(ti1,sj)+(fu fv)(ti1,sj1)p(ti,sj)for u,v N.Letting v ,we obtainmj=1ni=1(fu f)(ti,sj)(fu f)(ti,sj1)(fu f)(ti1,sj)+(fu f)(ti1,sj1)p(ti,sj),which implies thatp(,)E(fu f1/p)

42、1.By Definition 3.1,we have fu fBVp(,)(II,E)1/pfor u N.Since fBVp(,)(II,E)fu fBVp(,)(II,E)+fuBVp(,)(II,E)0 there exist partitions and of I,such that for every f Ap(,)E(f)+p(,)E(f,).Theorem 3.2Let p(,)P(I I).A set A BVp(,)(I I,E)is precompact,if the followingconditions are satisfied:(i)the set A A is

43、 equivariated(ii)for every t,s I,f(t,s):f A is a precompact set.Proof Let =2k,k N.By the condition(i),for every f,g A and 0,there exist partitions:0=t0 t1 tn=1 and:0=s0 s1 0,p(,)E(f hk)1.So A is totally bounded,i.e.,precompact.The proof is complete.Corollary 3.1Let p(,)P(I I).A set A BVp(,)(I I,K)is

44、 precompact,if the followingconditions are satisfied:(i)the A is bounded(ii)the set A A is equivariated.3.2Bivariate variable bounded Riesz variation function spacesDefinition 3.3Let p(,)P(I I).For a function f:I I E,and two partitions :0=t0 t1 tn=1 and:0=s0 s1 0:p(,)R,E(f)1.Theorem 3.3Let p(,)P(I I

45、).Then RBVp(,)(I I,E)is a Banach space.The proof is similar to Theorem 3.3 in 24.Definition 3.4Let p(,)P(I I).A set A RBVp(,)(I I,E)is said to be equivariated,iffor each 0 there exist partitions and of I,such that for every f A,p(,)R,E(f)+p(,)R,E(f,).Theorem 3.4Let p(,)P(II).A set A RBVp(,)(II,E)is

46、precompact,if the followingconditions are satisfied:(i)the set A A is equivariated(ii)for every t,s I,the set f(t,s):f A is a precompact set.Proof By the condition(i),for each x,y A,we havep(,)R,E(f g)15 2p+p(,)R,E(f g,).Let =2k,k R.Let Yi,j=f(ti,sj):f A,i=0,1,n,j=0,1,m,and Y=Y0,0 Y0,1 Yn,m,then by

47、the condition(ii),Y is a precompact set in E(n+1)(m+1).For each=(0,0,0,1,n,m)Y,with E(n+1)(m+1)=mj=0ni=0i,jpi,j,where=max(ti ti1)(sj sj1)p(ti,sj),(ti ti1)(sj+1 sj)p(ti,sj+1),(ti+1 ti)(sj sj1)p(ti+1,sj),(ti+1 ti)(sj+1 sj)p(ti+1,sj+1)andpi,j=minp(ti,sj),p(ti,sj1),p(ti1,sj),p(ti1,sj1),there exists h1,h

48、2,hN A,such that for each f A,mj=0ni=0f(ti,sj)hk(ti,sj)pi,j15 2kp+p+1.Thereforep(,)R,E(f hk)15 2kp+p+1+p(,)R,E(f hk,),变指标有界变差空间的准紧集119wherep(,)R,E(f hk,)=mj=1ni=11(ti ti1)p(ti,sj)(sj sj1)p(ti,sj)(f hk)(ti,sj)(f hk)(ti,sj1)(f hk)(ti1,sj)+(f hk)(ti1,sj1)p(ti,sj)mj=1ni=1(f hk)(ti,sj)(f hk)(ti,sj1)(f hk

49、)(ti1,sj)+(f hk)(ti1,sj1)p(ti,sj)2p+1mj=0ni=0(f hk)(ti,sj)pi,j+2p+1mj=0ni=0(f hk)(ti,sj1)pi,j+2p+1mj=0ni=0(f hk)(ti1,sj)pi,j+2p+1mj=0ni=0(f hk)(ti1,sj1)pi,j45 2kp+,thusp(,)R,E(f hk)15 2kp+45 2kp+=12kp+.By the inequality p(,)R,E(2f)2p+p(,)R,E(f),we havep(,)R,E(f hk)=p(,)R,E(2k(f hk)2kp+p(,)R,E(f hk)1

50、,andf hkRBVp(,)(II,E)=inf:p(,)R,E(f hk)1.So A is totally bounded,i.e.,precompact.The proof is complete.Corollary3.2Letp(,)P(II).AsetA RBVp(,)(II,K)isprecompact,ifthefollowingconditions are satisfied:(i)A is bounded(ii)the set A A is equivariated.References1 Jordan C.Sur la srie de FourierJ.Comptes R

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服