1、七年级下册广州数学期末试卷测试与练习(word解析版)一、选择题1的平方根是()ABCD2下列哪些图形是通过平移可以得到的()ABCD3在平面直角坐标系中,下列各点在第二象限的是( )ABCD4下列命题是假命题的是( )A对顶角相等B两直线平行,同旁内角相等C过直线外一点有且只有一条直线与已知直线平行D同位角相等,两直线平行5把一块直尺与一块含的直角三角板如图放置,若,则的度数为( )ABCD1246若一个正数的两个平方根分别是2m+6和m18,则5m+7的立方根是( )A9B3C2D97在同一平面内,若A与B的两边分别平行,且A比B的3倍少40,则A的度数为( )A20B55C20或125D
2、20或558在平面直角坐标系中,对于点P(x,y),我们把点P(y1,x1)叫做点P的友好点,已知点A1的友好点为点A2,点A2的友好点为点A3,点A3的友好点为点A4,以此类推,当点A1的坐标为(2,1)时,点A2021的坐为()A(2,1)B(0,3)C(4,1)D(2,3)二、填空题9已知是实数,且则的值是_.10点(m,1)和点(2,n)关于x轴对称,则mn等于_.11如图中,AD、AF分别是的角平分线和高,_12如图所示,已知ABCD,EF平分CEG,180,则2的度数为_13将一张长方形纸条折成如图的形状,已知,则_14规定一种关于、的新运算:,那么_15把所有的正整数按如图所示规
3、律排列形成数表若正整数6对应的位置记为,则对应的正整数是_第1列第2列第3列第4列第1行12510第2行43611第3行98712第4行16151413第5行16如图,点,根据这个规律,探究可得点的坐标是_三、解答题17(1)(2)18求下列各式中的值:(1);(2);(3)19完成下面的证明:已知:如图,求证:证明:(已知),_(_),(已知),_即_(_)20如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各点的坐标;(2)将 三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1
4、B1C1的坐标,并画出平移后的图形;(3)求出三角形ABC的面积21任意无理数都是由整数部分和小数部分构成的已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为例如:,即,显然的整数部分是2,小数部分是根据上面的材料,解决下列问题:(1)若的整数部分是m,的整数部分是n,求的值(2)若的整数部分是,小数部分是y,求的值二十二、解答题22(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“=”或“”号)(2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由二十三、解答题23如图
5、,直线与、分别交于点、,点在直线上,过点作,垂足为点(1)如图1,求证:;(2)若点在线段上(不与、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 24已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时(1)当点P在N右侧时:若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;(2)若镜像,求的度数25如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”如图2,CAB和BDC的平分线A
6、P和DP相交于点P,并且与CD、AB分别相交于M、N试解答下列问题:(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;(2)在图2中,若B=96,C=100,求P的度数;(3)在图2中,若设C=,B=,CAP=CAB,CDP=CDB,试问P与C、B之间存在着怎样的数量关系(用、表示P),并说明理由;(4)如图3,则A+B+C+D+E+F的度数为 26已知在中,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数【参考答案】一、选择题1C解析:C【分析】根据平
7、方根的定义开平方求解即可;【详解】解:,的平方根是;故答案选C【点睛】本题主要考查了平方根的计算,准确计算是解题的关键2B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误解析:B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误故选:B【点睛】本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键3C【分析】根据点在第二象限的符号特点横坐标
8、是负数,纵坐标是正数作答【详解】解:A、(-,0)在x轴上,故本选项不符合题意;B、(2,-1)在第四象限,故本选项不符合题意;D、(-2,1)在第二象限,故本选项符合题意;D、(-2,-1)在第三象限,故本选项不符合题意故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C.
9、过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键5D【分析】根据角的和差可先计算出AEF,再根据两直线平行同旁内角互补即可得出2的度数【详解】解:由题意可知AD/BC,FEG=90,1=34,FEG=90,AEF=90-1=56,AD/BC,2=180-AEF=124,故选:D【点睛】本题考查平行线的性质熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键6B【分析】根据立方根与平方根的定义即可求出答案【详解】解:由题意可知:2m+6+m180,m
10、4,5m+727,27的立方根是3,故选:B【点睛】考核知识点:平方根、立方根理解平方根、立方根的定义和性质是关键7C【分析】根据A与B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求A得度数【详解】解:两个角的两边分别平行,这两个角大小相等或互补,这两个角大小相等,如下图所示:由题意得,A=B,A=3B-40,A=B=20,这两个角互补,如下图所示:由题意得,综上所述,A的度数为20或125,故选:C【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系8A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律
11、,据此可解【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数)2021=5054+1,点A2021的坐标为(2,1)故选:A【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键二、填空题96【解析
12、】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛解析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键10-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案【详解】点A(m,1)和点B(2,n)关于x轴对称,m2,n-1,故mn2故填:-2.【点睛】此题解析:-2【分析】直接
13、利用关于x轴对称点的性质得出m,n的值进而得出答案【详解】点A(m,1)和点B(2,n)关于x轴对称,m2,n-1,故mn2故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键11【分析】根据三角形内角和定理及角平分线的性质求出BAD度数,再由三角形内角与外角的性质可求出ADF的度数,由AFBC可求出AFD=90,再由三角形的内角和定理即可解答【详解】A解析:【分析】根据三角形内角和定理及角平分线的性质求出BAD度数,再由三角形内角与外角的性质可求出ADF的度数,由AFBC可求出AFD=90,再由三角形的内角和定理即可解答【详解】AF是的高,在中,又在
14、中,又AD平分,故答案为:【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等1250【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,解析:50【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,故答案为:50【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系1355【分析】依据平行线的性质以及折叠的性质,即可得
15、到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等14【分析】根据新定义,将3与-2代入原式求解即可.【详解】故答案为:【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.解析:【分析】根据新定义,将3与-2代入原式求解即可.【详解】故答案为:【点睛】本题考查了新定义运算,把新定义
16、运算转换成有理数混合运算是解题关键.15138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,n行n列数的特点为(n2-n解析:138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题【详解】解:正整数6对应的位置记为,即表示第2行第3列的数,表示第12行第7列的数,由1行1列的数字是
17、12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,n行n列的数字是n2-(n-1)=n2-n+1,第12行12列的数字是122-12+1=133,第12行第7列的数字是138,故答案为:138【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度16【分析】由图形得出点的横坐标依次是0、1、2、3、4、,纵坐标依次是0、2、0、0、2、0、,四个一循环,继而求得答案【详解】解:观察图形可知,点的横坐标依次是0
18、、1、2、3、4、解析:【分析】由图形得出点的横坐标依次是0、1、2、3、4、,纵坐标依次是0、2、0、0、2、0、,四个一循环,继而求得答案【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、,纵坐标依次是0、2、0、0、2、0、,四个一循环,故点坐标是故答案是:【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律三、解答题17(1);(2)【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案【详解】解:(1) (2) 【点睛】解析:(1);(2)【分析】(1)先求算术平方根
19、,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案【详解】解:(1) (2) 【点睛】本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键18(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出
20、x的值【详解】解:(1)x3=0.008,则x=0.2;(2)x3-3= 则x3=3+故x3=解得:x=;(3)(x-1)3=64则x-1=4,解得:x=5【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键19BAC,垂直的定义,180,BAD,同旁内角互补,两直线平行【分析】根据垂直的定义和已知证明BAD,即,由同旁内角互补,两直线平行即可得出结论【详解】证明:(已知),BAC(解析:BAC,垂直的定义,180,BAD,同旁内角互补,两直线平行【分析】根据垂直的定义和已知证明BAD,即,由同旁内角互补,两直线平行即可得出结论【详解】证明:(已知),BAC(垂直的定义),(已知),1
21、80即BAD(同旁内角互补,两直线平行)故答案为:BAC,垂直的定义,180,BAD,同旁内角互补,两直线平行【点睛】本题主要考查了垂直定义和平行线的判定,证明BAD是解题关键20(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律
22、写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的A1B1C1如下图所示:;(3)【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离作图时要先找到图形的关键点
23、,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形21(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是解析:(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是3,即m=3,的整数部分是2,即n=2,=0;(2),的整数部分是10,即2x=10,x=5,的小数部分是=,即y=,=【点睛】本题考查了二次根式的整数
24、和小数部分看懂题例并熟练运用是解决本题的关键二十二、解答题22(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案【详解】解:(1)圆的面积与正方形的面积都是,圆的半径为,正方形的边长为,(2
25、)不能裁出长和宽之比为的长方形,理由如下:设裁出的长方形的长为,宽为,由题意得:,解得或(不合题意,舍去),长为,宽为,正方形的面积为,正方形的边长为,不能裁出长和宽之比为的长方形【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键二十三、解答题23(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可求解;
26、(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(1)证明:如图,过点作, ,(2)补全图形如图2、图3,猜想:或证明:过点作 , ,平分,如图3,当点在上时,平分,即如图2,当点在上时,平分,即【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系24(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,解析:(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关
27、系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可【详解】(1),证明:,;过点Q作QFCD,;(2)如图,当点P在N右侧时,过点Q作QFCD,同(1)得,如图,当点P在N左侧时,过点Q作QFCD,同(1)得,同理可得,;综上,的度数为或【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系25(1)3;(2)98;(3)P=(+2),理由见解析;(4)360.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到CAP=解析:
28、(1)3;(2)98;(3)P=(+2),理由见解析;(4)360.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到CAP=BAP,BDP=CDP,再根据三角形内角和定理得到CAP+C=CDP+P,BAP+P=BDP+B,两等式相减得到CP=PB,即P=(C+B),然后把C=100,B=96代入计算即可;(3)与(2)的证明方法一样得到P=(2C+B)(4)根据三角形内角与外角的关系可得B+A=1,C+D=2,再根据四边形内角和为360可得答案【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)CAB和BDC的平分
29、线AP和DP相交于点P,CAP=BAP,BDP=CDP,CAP+C=CDP+P,BAP+P=BDP+B,CP=PB,即P=(C+B),C=100,B=96P=(100+96)=98;(3)P=(+2);理由:CAP=CAB,CDP=CDB,BAP=BAC,BDP=BDC,CAP+C=CDP+P,BAP+P=BDP+B,CP=BDCBAC,PB=BDCBAC,2(CP)=PB,P=(B+2C),C=,B=,P=(+2);(4)B+A=1,C+D=2,A+B+C+D=1+2,1+2+F+E=360,A+B+C+D+E+F=360故答案为36026(1)60;(2)15;(3)30或15【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60;(2)15;(3)30或15【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得出结论【详解】解:(1),;(2)由(1)知,;(3)当时,如图3,由(1)知,;当时,如图4,点,重合,由(1)知,即当以、为顶点的三角形是直角三角形时,度数为或【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100