1、一、解答题1如图1,在平面直角坐标系中,且满足,过作轴于(1)求的面积(2)若过作交轴于,且分别平分,如图2,求的度数(3)在轴上存在点使得和的面积相等,请直接写出点坐标2如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由3已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直
2、线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由4如图1,已ABCD,CA(1)求证:ADBC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究BAE,CDE,E之间的数量关系,并证明(3)如图3,若C90,且点E在线段BC上,DF平分EDC,射线DF在EDC
3、的内部,且交BC于点M,交AE延长线于点F,AED+AEC180,直接写出AED与FDC的数量关系: 点P在射线DA上,且满足DEP2F,DEAPEADEB,补全图形后,求EPD的度数5已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HFG之间的数量关系6如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线
4、n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由7阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,你同意小明的
5、表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:,即23,的整数部分为2,小数部分为(2)请解答:(1)整数部分是 ,小数部分是 (2)如果的小数部分为a,的整数部分为b,求|ab|+的值(3)已知:9+x+y,其中x是整数,且0y1,求xy的相反数8如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences)这个常数叫做等比数列的公比,通常用字母q表示(q0)(1)观察一个等比列数1,它的公比q ;如果an(n为正整数)表示这个等比数列
6、的第n项,那么a18 ,an ;(2)如果欲求1+2+4+8+16+230的值,可以按照如下步骤进行:令S1+2+4+8+16+230等式两边同时乘以2,得2S2+4+8+16+32+231由 式,得2SS2311即(21)S2311所以 请根据以上的解答过程,求3+32+33+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q1,请用含a1,q,n的代数式表示a1+a2+a3+an9观察下列各式:;根据上面的等式所反映的规律,(1)填空:_;_;(2)计算:10阅读材料,回答问
7、题:(1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,则_,_(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元若从下沙江滨站到文海南路站的里程是3.07公里,车费_元,下沙江滨站到金沙湖站里程是7.93公里,车费
8、_元,下沙江滨站到杭州火东站里程是19.17公里,车费_元;若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?11对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a0,且a1),那么数x叫做以a为底N的对数,记作:x=logaN,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN当a0,且a1,M0,N0时,loga(MN)=logaM+logaN(I)解方程:logx4=2;()log28= ()计算:(lg2)2+lg21g5+1g52018= (直接写答案)12观察下面的变形规律: ;解答下面的问题:(1
9、)仿照上面的格式请写出= ;(2)若n为正整数,请你猜想= ;(3)基础应用:计算:(4)拓展应用1:解方程: =2016(5)拓展应用2:计算:13如图,已知点,(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标_(用含的式子表示)14已知,定点,分别在直线,上,在平行线,之间有一动点(1)如图1所示时,试问,满足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(
10、直接写出结论)15如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且OAB的面积为6(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及BPQ的面积16在平面直角坐标系中,对于任意两点,如果,则称与互为“距点”例如:点,点,由,可得点与互为“距点”(1)在点,中,原点的“距点”是_(填字母);(2)已知点,点,过点作平行于
11、轴的直线当时,直线上点的“距点”的坐标为_;若直线上存在点的“点”,求的取值范围(3)已知点,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围17在平面直角坐标系中描出下列两组点,分别将每组里的点用线段依次连接起来第一组:、;第二组:、(1)线段与线段的位置关系是;(2)在(1)的条件下,线段、分别与轴交于点,.若点为射线上一动点(不与点,重合)当点在线段上运动时,连接、,补全图形,用等式表示、之间的数量关系,并证明当与面积相等时,求点的坐标18在平面直角坐标系中,满足(1)直接写出、的值: ; ;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于
12、C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值19我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能20如图,已知和的度数满
13、足方程组,且.(1)分别求和的度数;(2)请判断与的位置关系,并说明理由;(3)求的度数21平面直角坐标系中,A(a,0),B(0,b),a,b满足,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,BAC的角平分线与DFG的角平分线交于点H,求G与H之间的数量关系22如果3个数位相同的自然数m,n,k满足:m+nk,且k各数位上的数字全部相同,则称数m和数n是一对“黄金搭档数”例如:因为25,63,88都是两位数,且25
14、+6388,则25和63是一对“黄金搭档数”再如:因为152,514,666都是三位数,且152+514666,则152和514是一对“黄金搭档数”(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t的和能被7整除,求出满足题意的s23若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”例如:关于x的代数式,当-1x 1时,代数式在x=1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1x1这个范围内,则
15、称代数式是-1x1的“湘一代数式”(1)若关于的代数式,当时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不是”)的“湘一代数式”(2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值(3)若关于的代数式是的“湘一代数式”,求m的取值范围24某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子(1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱
16、子多少个?(3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个?25在平面直角坐标系中,点,的坐标分别为,且,满足方程为二元一次方程(1)求,的坐标(2)若点为轴正半轴上的一个动点如图1,当时,与的平分线交于点,求的度数;如图2,连接,交轴于点若成立设动点的坐标为,求的取值范围26阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作例如,那么,其中例如,请你解决下列问题:(1)_,_;(2)如果,那么x的取值范围是_;(3)如果,那么x的值是_;(
17、4)如果,其中,且,求x的值27如图,数轴上两点A、B对应的数分别是1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数(1)在2.5,0,2,3.5四个数中,连动数有;(直接写出结果)(2)若k使得方程组中的x,y均为连动数,求k所有可能的取值;(3)若关于x的不等式组的解集中恰好有4个连动整数,求这4个连动整数的值及a的取值范围28如图,在平面直角坐标系中,同时将点A(1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D连接AC,
18、BD(1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积;(2)在坐标轴上是否存在点P,连接PA、PC使SPACS四边形ABCD?若存在,求点P坐标;若不存在,请说明理由29我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况如图1,灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环两灯交叉照射且不间断巡视若灯转动的速度是度/秒,灯转动的速度是度/秒,且, 满足若这一带江水两岸河堤相互平行,即,且根据相关信息,解答下列问题(1)_,_(2)若灯的光射线先转动24秒,灯的光射线才开始转动,在灯的光射
19、线到达之前,灯转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯的光射线到达之前,若两灯射出的光射线交于点,过点作交于点,则在转动的过程中,与间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围30学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元(1)求每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮
20、(两样都要买,4元钱恰好用完),共有哪几种购买方案?【参考答案】*试卷处理标记,请不要删除一、解答题1(1)4;(2);(2)或【分析】(1)根据非负数的性质易得,然后根据三角形面积公式计算;(2)过作,根据平行线性质得,且,所以;然后把 代入计算即可;(3)分类讨论:设,当在轴正半轴上时,过作轴,轴,轴,利用可得到关于的方程,再解方程求出;当在轴负半轴上时,运用同样方法可计算出【详解】解:(1),的面积;(2)解:轴,又,过作,如图,分别平分,即:,;(3)或解:当在轴正半轴上时,如图,设,过作轴,轴,轴,解得, 当在轴负半轴上时,如图,解得,综上所述:或【点睛】本题考查了平行线的判定与性质
21、:两直线平行,内错角相等也考查了非负数的性质、坐标与图形性质以及三角形面积公式构造矩形求三角形面积是解题关键2(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF
22、,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当
23、点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键3(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代
24、换得出;(3)作的平分线交的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键4(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根据平行线的性质得ABCDEF,然后由两直线平行内错角相等可得结论;(3)根据AED+AEC=18
25、0,AED+DEC+AEB=180,DF平分EDC,可得出2AED+(90-2FDC)=180,即可导出角的关系;先根据AED=F+FDE,AED-FDC=45得出DEP=2F=90,再根据DEA-PEA=DEB,求出AED=50,即可得出EPD的度数【详解】解:(1)证明:ABCD,A+D=180,C=A,C+D=180,ADBC;(2)BAE+CDE=AED,理由如下:如图2,过点E作EFAB,ABCDABCDEFBAE=AEF,CDE=DEF即FEA+FED=CDE+BAEBAE+CDE=AED;(3)AED-FDC=45;AED+AEC=180,AED+DEC+AEB=180,AEC=
26、DEC+AEB,AED=AEB,DF平分EDCDEC=2FDCDEC=90-2FDC,2AED+(90-2FDC)=180,AED-FDC=45,故答案为:AED-FDC=45;如图3,AED=F+FDE,AED-FDC=45,F=45,DEP=2F=90,DEA-PEA=DEB=DEA,PEA=AED,DEP=PEA+AED=AED=90,AED=70,AED+AEC=180,DEC+2AED=180,DEC=40,ADBC,ADE=DEC=40,在PDE中,EPD=180-DEP-AED=50,即EPD=50【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质
27、等知识点是解题的关键5(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可(2)如图2中,结论:2BEG-HFG=90利用平行线的性质证明即可【详解】解:(1)EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90,BEG=36,HFG=18故答案为:18结论:2BEG+HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HF
28、G=180,2BEG+HFG=90(2)如图2中,结论:2BEG-HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90-HFG=180,2BEG-HFG=90【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型6(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】
29、解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=49,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的7(1)7;-7;(2)5;(3)
30、13-【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求【详解】解:(1)78,的整数部分是7,小数部分是-7故答案为:7;-7(2)34,23,b2|a-b|+=|-3-2|+=5-+=5(3)23119+12,9+=x+y,其中x是整数,且0y1,x11,y-11+9+-2,x-y11-(-2)13-【点睛】本题考查的是无理数的小数部分和整数部分及其运算估算无理数的整数部分是解题关键8(1) , , ;(2);(3)【分析】(1)1即可求出q,根据已知数的特点求出a18
31、和an即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可【详解】解:(1)1,a181()17,an1()n1,故答案为:,; (2)设S3+32+33+323,则3S32+33+323+324,2S3243,S(3)ana1qn1,a1+a2+a3+an【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度9(1);(2).【分析】(1)根据已知数据得出规律,进而求出即可;(2)利用规律拆分,再进一步交错约分得出答案即可【详解】解:(1);(2)=.【点睛】此题主要考查了实数运算中的规律探索,
32、根据已知运算得出数字之间的变化规律是解决问题的关键10(1);(2)2;3;6这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得【详解】(1)故答案为:;(2)3.07公里需要2元7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元7.93公里所需费用为:(元)公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元
33、;公里所需费用为:(元)故答案为:2;3;6由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;乘坐24公里所需费用为:(元)由表格可知:乘坐24公里以上的部分,每一元可以坐8公里7元可以乘坐的地铁最大里程为:(公里)这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键11(I) x=2;() 3; () -2017.【分析】(I)根据对数的定义,得出x2=4
34、,求解即可;()根据对数的定义求解即;()根据loga(MN)=logaM+logaN求解即可【详解】(I)解:logx4=2,x2=4,x=2或x=-2(舍去)()解:8=23,log28=3,故答案为3; ()解:(lg2)2+lg21g5+1g52018= lg2( lg2+1g5) +1g52018= lg2 +1g52018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义12(1) ;(2) ;(3);(4)x=2017;(5)【分析】(1)类比题目中方法解答即可;(2)根
35、据题目中所给的算式总结出规律,解答即可;(3)利用总结的规律把每个式子拆分后合并即可解答;(4)方程左边提取x后利用(3)的方法计算后,再解方程即可;(5)类比(3)的方法,拆项计算即可【详解】(1)故答案为:; (2)=故答案为:;(3)计算:=1=; (4) =2016=2016,x=2017; (5)=+()+()+()=(1)=【点睛】本题是数字规律探究题,解决问题基本思路是正确找出规律,根据所得的规律解决问题13(1)2;(2);(3)或【分析】(1)直接利用以为底,进行求面积;(2)的面积等于的面积,需要分三种情况进行分类讨论;(3)根据推导出,然后分两种情况进行讨论,即当位于轴负
36、半轴上时与位于轴正半轴上时【详解】解:(1)()作如下图形,进行分类讨论:当点在轴正半轴上时,;当点在轴负半轴上时,;当点在轴负半轴上时,;因此符合条件的点坐标有3个,分别是(3),即与点到的距离相等,由可推出,位于轴负半轴上时,;位于轴正半轴上时,综上:点的坐标为或【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解14(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,
37、满足数量关系为:;(2)当点在的右侧时,满足数量关系为:;(3)若当点在的左侧时,;当点在的右侧时,可求得;结合可得,由,得出;可得,由,得出【详解】解:(1)如图1,过点作,;(2)如图2,当点在的右侧时,满足数量关系为:;过点作,;(3)如图3,若当点在的左侧时,分别平分和,;如图4,当点在的右侧时,;故答案为:或30;由可知:,;,综合以上可得与的数量关系为:或【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键15(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题
38、;(2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时; (3)过点K作KHOA用H根据SBPK+SAKH=SAOB-S长方形OPKH,构建方程求出t,即可解决问题;【详解】解:(1),2(a+2)-3(a-2)=6,-a+4=0,a=4,A(4,0),SOAB=6,4OB=6,OB=3,B(0,3)(2)当点P在线段OB上时,S=PQPB=4(3-t)=-2t+6当点P在线段OB的延长线上时,S=PQPB=4(t-3)=2t-6综上所述,S=(3)过点K作KHOA用HSBPK+SAKH=SAOB-S长方形OPKH,PKBP+AHKH=6-PKOP,(3-t)+(4-)
39、t=6-t,解得t=1,SBPQ=-2t+6=4【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题16(1);(2);(3)【分析】(1)根据定义判断即可;(2)设直线上与点的“距点”的点的坐标为(a,3),根据定义列出关于a的方程,解方程即可;点坐标为,直线上点的纵坐标为b,由题意得,转化为不等式组,解不等式组即可(3)分类讨论,分别取P与点M重合、P与点N重合讨论。当点P与点M重合时,设C左侧与x轴交于点Q,则点Q的坐标是(m-,0),根据定义列出关于m的绝对值方程,解方程,取较小的值;当点P与点N重合时,设C
40、右侧与x轴交于点Q,则点Q的坐标是(m+,0),根据定义列出关于m的绝对值方程,解方程,取较大的值,问题得解【详解】解:(1),O(0,0),点D与原点互为“距点”;,O(0,0),所以点D与原点互为“距点”;,O(0,0),所以点D与原点互为“距点”;故答案为:;(2)设直线上与点的“距点”的点的坐标为(a,3),则,解得a=2故答案为(2,3);如图,点坐标为,直线上点的纵坐标为b,设直线上点的坐标为(c,b)则:,,即的取值范围是;(3)如图(1),当点P与点M重合时,设C左侧与x轴交于点Q,则点Q的坐标是(m-,0),点P与点Q互为“5-距点,P(1,2),解得: ,;,取当点P与点N重合时,设C右侧与x轴交于点Q,则点Q的坐标是(m+,0),点P与点Q互为“5-距点,则P(3,2),解得:, ,取【点睛】本题为新定义题型,关键要读懂题目中给出的新概念,建立模型,并结合所
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100