1、(完整版)苏教七年级下册期末数学试卷一、选择题1下列运算正确的是( )ABCD2如图,已知直线a,b被直线c所截,下列有关与说法正确的是( )A与是同位角B与是内错角C与是同旁内角D与是对顶角3已知关于x、y的二元一次方程axby,下表列出了当x分别取值时对应的y值则关于x的不等式axb0的解集为( )x210123y321012Ax1Bx1Cx0Dx04若,则下列各式中一定成立的是( )ABCD5若关于的不等式的解集是,则关于的不等式的解集是( )ABCD6下列命题中,正确的是()A任何有理数的偶数次方都是正数B任何一个整数都有倒数C若b=a,则|b|=|a|D一个正数与一个负数互为相反数7
2、根据下表中提供的四个数的变化规律,则的值为( )1426384102029320435554mx第1个第2个第3个第4个第个A252B209C170D1358如图,一般中,是边上的点,先将沿着翻折,翻折后的边交于点,又将沿着翻折,点恰好落在上,此时,则原三角形的( )度ABCD二、填空题9计算:(x2y)3y=_10下列四个命题:对顶角相等;内错角相等;平行于同一条直线的两条直线互相平行;如果一个角的两边分别平行于另一个角的两边,那么这两个角相等其中真命题的是_(填序号)11如图,ABC,DBE均为直角三角形,且D,A,E,C都在一条直线上,已知C25,D45,则EBC的度数是_12若a+b2
3、,ab3,则代数式a3b+2a2b2+ab3的值为_13当_时,方程组的解,x、y的值互为相反数14如图,一块长AB为20m,宽BC为10m的长方形草地ABCD被两条宽都为1m的小路分成四部分,每条小路的两边都互相平行,则分成的四部分绿地面积之和为_m215正多边形的一个内角等于144,则这个多边形的边数是 _ 16如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_17计算或化简(1) (2) (3)18因式分解(1) (2)19解方程组:(1);(2)20解不等式组:,并在数轴上表示该不等式组的解集三、解答题21如图,已知,直线与相交于点,(1)求,的度数;(2)求证:平分22市煤
4、气公司准备给某新建小区的用户安装管道煤气,现有用户提出了安装申请,此外每天还有新的用户提出申请,假设煤气公司每个安装小组安装的数量相同,且每天申请安装的用户数也相同,若煤气公司安排个安装小组同时做,则天就可以装完所有新、旧用户的申请;若煤气公司安排个安装小组同时做,则天可以装完所有新旧用户的申请.求每天新申请安装的用户数及每个安装小组每天安装的数量;如果要求在天内安装完所有新、旧用户的申请,但前天煤气公司只能派出个安装小组安装,那么最后几天至少需要增加多少个安装小组同时安装,才能完成任务?23随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具某汽车销售公司计划购进一批
5、新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(列方程组解应用题)(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)则该公司共有 种购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,最大利润是 元24已知,点为射线上一点(1)如图1,写出、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点
6、,且:,求的度数25我们将内角互为对顶角的两个三角形称为“对顶三角形例如,在图1中,的内角与的内角互为对顶角,则与为对顶三角形,根据三角形内角和定理知“对顶三角形”有如下性质:(1)(性质理解)如图2,在“对顶三角形”与中,求证:;(2)(性质应用)如图3,在中,点D、E分别是边、上的点,若比大20,求的度数;(3)(拓展提高)如图4,已知,是的角平分线,且和的平分线和相交于点P,设,求的度数(用表示)【参考答案】一、选择题1C解析:C【分析】直接利用同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法依次计算即可【详解】解:A、,故选项错误,不符合题意;B、,故选项错误,不符合题意;C、,故选
7、项正确,符合题意;D、,故选项错误,不符合题意;故选:C【点睛】本题考查了同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法,解题的关键是掌握相关的运算法则2A解析:A【分析】根据同位角的定义判断即可【详解】解:1和2是同位角,故选:A【点睛】本题考查了同位角、内错角、同旁内角及对顶角的定义,能熟记同位角、内错角、同旁内角及对顶角的定义的内容是解此题的关键,注意数形结合3B解析:B【分析】根据表格选取两对值代入二元一次方程组成方程组,解方程组得不等式,解不等式即可【详解】解:由题意得出,解得,则不等式为x10,解得x1,故选:B【点睛】本题考查表格信息,会利用表格信息确定方程组,会解方程组,会
8、解一元一次不等式是解题关键4A解析:A【详解】【考点】不等式的基本性质【分析】根据不等式的基本性质即可判断【解答】解:A、不等式的两边同时加上或减去同一个数,不等号方向不变,故本选项正确;B、不知道的符号,不等号方向不确定,故本选项错误;C、不等式的两边同时乘以或除以同一个负数,不等号方向改变,故本选项错误;D、不等式的两边同时乘以-1,不等号方向改变,不等式两边再同时加上4,不等号方向不变,故本选项错误故选A5D解析:D【分析】由题意可知,a、b均为负数,且可得a=2b,把a=2b代入bxa中,则可求得bxa的解集【详解】由得:不等式的解集为a0a=2bb0由,得b2故选:D【点睛】本题考查
9、了解一元一次不等式,关键是由条件确定字母a的符号,从而确定a与b的关系,易出现错误的地方是求bxa的解集时,忽略b的符号,从而导致结果错误6C解析:C【解析】【分析】利用举反例的方法判断即可【详解】解:0的偶数次方不是正数,A错误;0没有倒数,B错误;b=a,则|b|=|a|,C正确;1和2不是互为相反数,D错误;故选C【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理7B解析:B【分析】观察表格,分别得出四个数字之间的关系,依照规律解答【详解】解:观察可知:表格中左上的数为从1开始的连续自然数,左下的数为从2开始的连续自然数
10、,右上的数为左下的数的2倍,右下角的数等于右上角与左下角的两个数的积与左上角数的和,n=202-1=9,m=202=10,x=20m+n=209,故选B【点睛】此题考查的是数字的变化规律,猜想各个数之间的联系是解题的关键8A解析:A【分析】在图的ABC中,根据三角形内角和定理,可求得B+C=150;结合折叠的性质和图可知:B=3CBD,即可在CBD中,得到另一个关于B、C度数的等量关系式,联立两式即可求得B的度数【详解】在ABC中,A=30,则B+C=150;根据折叠的性质知:B=3CBD,BCD=C;在CBD中,则有:CBD+BCD=180-82,即:B+C=98;-,得:B=52,解得B=
11、78故选:A【点睛】此题考查折叠变换,三角形内角和定理的应用,能够根据折叠的性质发现B和CBD的倍数关系是解题的关键二、填空题9x6y4【分析】根据幂的乘方与积的乘方的法则先去掉括号,再根据单项式乘单项式的运算法则进行计算即可得出答案【详解】解:(x2y)3y=x6y3y=x6y4故答案为:x6y4【点睛】本题考查了幂的乘方与积的乘方以及单项式乘单项式,熟练掌握单项式乘单项式的运算法则和幂的乘方与积的乘方的定义是解题的关键10【详解】分析:分别根据平行线的性质、对顶角及邻补角的定义、平行公理及推论对各小题进行逐一分析即可详解:符合对顶角的性质,故正确; 两直线平行,内错角相等,故错误; 符合平
12、行线的判定定理,故正确; 如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故错误 故答案为点睛:本题考查的是平行线的性质、对顶角及邻补角的定义、平行公理及推论,熟知以上各知识点是解答此题的关键11D解析:20【分析】先根据三角形的内角和定理得:DEB45,最后根据三角形外角的性质可得结论【详解】解:RtDBE中,D45,DBE90,DEB90-4545,C25,EBCDEBC45-2520,故答案为:20【点睛】本题考查三角形内角和和外角和定理,熟练掌握其性质是解题的关键.12-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知
13、数据即可求出代数式a3b+2a2b2+ab3的值【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=34,=12故答案为:12【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键136【分析】运用整体思想将两个方程的两边分别相加,结合x与y互为相反数求a【详解】解:,+得:2x+2y=3a-18,x+y=0,2x+2y=0,3a-18=0,a=6故答案为:6【点睛】本题考查了方程组的解和整体思想,也可以利用消元法求出方程组的解,然后代入x+y=0,得到关于a的方程,即可求出a14【分析】直接
14、利用平移道路的方法得出草地的绿地面积=(20-1)(10-1),进而得出答案【详解】解:由图象可得:这块草地的绿地面积为:(201)(101)=171(m2)故答案为:171【点睛】本题主要考查了生活中的平移现象,正确平移道路是解题关键1510【分析】先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可【详解】解:设这个正多边形是正n边形,根据题意得:(n-2)180=144n,解得:n=10解析:10【分析】先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可【详解】解:设这个正多边形是正n边形,根据题意得:(n-2)180=144n,解得:n=10故答案
15、为:10【点睛】本题考查了正多边形的内角,在解题时要根据正多边形的内角和公式列出式子是本题的关键16【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案【详解】已知可知直尺的两边平行故答案为:114【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三解析:【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案【详解】已知可知直尺的两边平行故答案为:114【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键17(1)0;(2);(3)【分析】(1)算出零指数幂、负指数幂和绝对值计算即可;(2)根据幂的运算性质计算即可;(3)根据
16、乘法公式计算即可;【详解】(1)原式,(2)原式,(3解析:(1)0;(2);(3)【分析】(1)算出零指数幂、负指数幂和绝对值计算即可;(2)根据幂的运算性质计算即可;(3)根据乘法公式计算即可;【详解】(1)原式,(2)原式,(3)原式,【点睛】本题主要考查了整式混合运算,准确利用零指数幂、负指数幂、绝对值、乘法公式进行计算是解题的关键18(1);(2)【分析】(1)根据公式法因式分解即可;(2)先用十字相乘法分解因式,再用平方差公式分解因式【详解】(1);(2)【点睛】本题考查了十字相乘法和公式法因式分解,掌握解析:(1);(2)【分析】(1)根据公式法因式分解即可;(2)先用十字相乘法
17、分解因式,再用平方差公式分解因式【详解】(1);(2)【点睛】本题考查了十字相乘法和公式法因式分解,掌握因式分解的方法是解题的关键19(1);(2)【分析】(1)利用代入消元法解二元一次方程组;(2)先将方程组变形,再用加减消元法解二元一次方程组【详解】(1)将代入得:,解得,将代入得:,原方程组的解为解析:(1);(2)【分析】(1)利用代入消元法解二元一次方程组;(2)先将方程组变形,再用加减消元法解二元一次方程组【详解】(1)将代入得:,解得,将代入得:,原方程组的解为;(2)由得:,得:,解得,将代入得,解得,原方程组的解为【点睛】本题考查了代入消元法和加减消元法解二元一次方程组,掌握
18、解二元一次方程组的方法是解题的关键20-2x3,见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,然后在数轴上表示其解集即可【详解】解:解不等式,得x2,解不等式,得x3,不等式组的解集为:-解析:-2x3,见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,然后在数轴上表示其解集即可【详解】解:解不等式,得x2,解不等式,得x3,不等式组的解集为:-2x3将解集在数轴上表示如解图:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解三、解答题21(1)36,72; (2)证明见解析【分析】(1)根据平行线的性质
19、与角度的比值求得2的度数,再求得1的度数即可; (2)根据EBA与互补求得EBA的度数即可得证【详解】解:解析:(1)36,72; (2)证明见解析【分析】(1)根据平行线的性质与角度的比值求得2的度数,再求得1的度数即可; (2)根据EBA与互补求得EBA的度数即可得证【详解】解:(1), 2+3=180, 2:3=2:3, 2= =72 1:2=1:2, 1= =36; (2)证明: EBA=180-2-1=180-72-36=72, EBA=2,即BA平分EBF【点睛】本题主要考查平行线的性质,角平分线的定义,解此题的关键在于熟练掌握其知识点并能灵活运用逻辑推理进行证明22(1)每天新申
20、请安装的用户数为户,安装小组每天安装的数量为户;(2)至少需要增加个安装小组同时安装.【解析】【分析】(1)设每天新申请安装的用户数为,安装小组每天安装的数量为,根据2个小组同时解析:(1)每天新申请安装的用户数为户,安装小组每天安装的数量为户;(2)至少需要增加个安装小组同时安装.【解析】【分析】(1)设每天新申请安装的用户数为,安装小组每天安装的数量为,根据2个小组同时做天完成,列出方程组,求出、的值即可;(2)设最后几天需要个安装小组同时安装,根据天的安装量大于等于新旧用户,列出不等式,求出的最小正整数解即可.【详解】(1)设每天新申请安装的用户数为,安装小组每天安装的数量为,由题意得,
21、解得:,答:每天新申请安装的用户数为户,安装小组每天安装的数量为户;(2)设最后几天需要个安装小组同时安装,由题意得,解得:,(个),答:至少需要增加个安装小组同时安装.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,设出未知数,根据等量关系建立方程组,难度一般.23(1)型汽车每辆进价为万元,型汽车每辆进价为万元;(2)3;(3)【分析】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意列出二元一次方程组解方程组求解即可;(2)设购进型汽车辆,解析:(1)型汽车每辆进价为万元,型汽车每辆进价为万元;(2)3;(3)【分析】(1)设型汽车每辆进价为万元,型汽车每辆进
22、价为万元,根据题意列出二元一次方程组解方程组求解即可;(2)设购进型汽车辆,型汽车辆,依题意列出二元一次方程,根据为正整数,求得整数解,即可求得方案数(3)根据(2)的方案以及题意,分别计算利润,比较之即可求得最大利润【详解】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意,得解得答:型汽车每辆进价为万元,型汽车每辆进价为万元(2)设购进型汽车辆,型汽车辆,依题意得为正整数,或或有3种购买方案故答案为:3(3)该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,方案1,获得的利润为:(元)方案2,获得的利润为:(元)方案3,获得的利润为:(元)购进型汽
23、车2辆,型汽车辆时,获利最大,最大利润是元故答案为:【点睛】本题考查了二元一次方程组的应用,找准等量关系列出方程组是解题的关键24(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H,根据EHG是DEH的外角,即可得出EHG=AED+EDG,进而得到EAF=AED+EDG; (3)设EAI
24、=BAI=,则CHE=BAE=2,进而得出EDI=+10,CDI=+5,再根据CHE是DEH的外角,可得CHE=EDH+DEK,即2=+5+10+20,求得=70,即可根据三角形内角和定理,得到EKD的度数【详解】解:(1)AED=EAF+EDG理由:如图1,过E作EHAB, ABCD, ABCDEH, EAF=AEH,EDG=DEH, AED=AEH+DEH=EAF+EDG; (2)证明:如图2,设CD与AE交于点H, ABCD, EAF=EHG, EHG是DEH的外角, EHG=AED+EDG, EAF=AED+EDG; (3)AI平分BAE, 可设EAI=BAI=,则BAE=2, 如图3
25、,ABCD, CHE=BAE=2, AED=20,I=30,DKE=AKI, EDI=+30-20=+10, 又EDI:CDI=2:1, CDI=EDK=+5, CHE是DEH的外角, CHE=EDH+DEK, 即2=+5+10+20, 解得=70, EDK=70+10=80, DEK中,EKD=180-80-20=80【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解解题时注意:三角形的一个外角等于和它不相邻的两个内角的和25(1)见详解;(2)100;(3)P=45-【分析】(1)由“对顶三角
26、形”的性质得,从而得,进而即可得到结论;(2)设=x, =y,则=x+20,=y-20,可得ABC+DCB=解析:(1)见详解;(2)100;(3)P=45-【分析】(1)由“对顶三角形”的性质得,从而得,进而即可得到结论;(2)设=x, =y,则=x+20,=y-20,可得ABC+DCB=y-20,根据三角形内角和定理,列出方程,即可求解;(3)设ABE=CBE=x,ACD=BCD=y,可得x+y=90-,结合CEP+ACD=CDP+P,即可得到结论【详解】(1)证明:在“对顶三角形”与中,又;(2)比大20,+=+,设=x, =y,则=x+20,=y-20,ABC+ACB=180-A=180-=x+y,ABC+DCB=ABC+ACB-= x+y- x-20=y-20,ABC+DCB+=180,y-20+y=180,解得:y=100,=100;(3),是的角平分线,设ABE=CBE=x,ACD=BCD=y,2x+2y+=180,即:x+y=90-,和的平分线和相交于点P,CEP=(180-2y-x),CDP=(180-2x-y),CEP+ACD=CDP+P,P=(180-2y-x)+y-(180-2x-y)= x+y=45-,即:P=45-【点睛】本题主要考查角平分线的定义,三角形内角和定理,三角形外角的性质,熟练掌握“对顶三角形”的性质,是解题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100