ImageVerifierCode 换一换
格式:DOC , 页数:42 ,大小:2.09MB ,
资源ID:5196798      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5196798.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级下册数学期末试卷填空题汇编试卷及答案(人教版)-解析.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级下册数学期末试卷填空题汇编试卷及答案(人教版)-解析.doc

1、一、解答题1如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,且(1)求; (2)若为直线上一点的面积不大于面积的,求P点横坐标x的取值范围;请直接写出用含x的式子表示y(3)已知点,若的面积为6,请直接写出m的值解析:(1)4;(2)或;(3)或【分析】(1)先根据偶次方和绝对值的非负性求出的值,从而可得点的坐标和的长,再利用直角三角形的面积公式即可得;(2)分和两种情况,先分别求出和的面积,再根据已知条件建立不等式,解不等式即可得;分和两种情况,利用、和的面积关系建立等式,化简即可得;(3)过点作轴的平行线,交直线于点,从而可得,再分、和三种情况,分别利用三角形的面积公式建立方程,

2、解方程即可得【详解】解:(1)由题意得:,解得,轴轴,;(2)的面积不大于面积的,的面积小于的面积,则分以下两种情况:如图,当时,则,因此有,解得,此时的取值范围为;如图,当时,则,因此有,解得,此时的取值范围为,综上,点横坐标的取值范围为或;当时,则,由(2)可知,则,即;如图,当时,则,解得,综上,;(3)过点作轴的平行线,交直线于点,由(2)可知,则,由题意,分以下三种情况:如图,当时,则,解得,不符题设,舍去;如图,当时,则,解得或(不符题设,舍去);如图,当时,则,解得,符合题设,综上,的值为或【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种

3、情况讨论是解题关键2已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由解析:(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2)先根据内错角相等

4、证GHPN,再根据同旁内角互补和等量代换得出FMN+GHF=180;(3)作PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ERFQ,得FQM1=R,设PER=REB=x,PM1R=RM1B=y,得出EPM1=2R,即可得=2【详解】解:(1)(-35)2+|-|=0,=35,PFM=MFN=35,EMF=35,EMF=MFN,ABCD;(2)FMN+GHF=180;理由:由(1)得ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,为2,理由:如图3中,作PEM1的平分线交M1Q的延长线于

5、R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键3已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、END的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,

6、NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数解析:(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MEN

7、MEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN

8、,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键4如图,直线与、分别交于点、,点在直线上,过点作,垂足为点(1)如图1,求证:;(2)若点在线段上(不与、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(

9、1)证明:如图,过点作, ,(2)补全图形如图2、图3,猜想:或证明:过点作 , ,平分,如图3,当点在上时,平分,即如图2,当点在上时,平分,即【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系5(1)如图,若B+D=E,则直线AB与CD有什么位置关系?请证明(不需要注明理由)(2)如图中,AB/CD,又能得出什么结论?请直接写出结论 (3)如图,已知AB/CD,则1+2+n-1+n的度数为 解析:(1)AB/CD,证明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E

10、作EF/AB,利用平行线的性质则可得出B=BEF,再由已知及平行线的判定即可得出ABCD;(2)如图,过点E作EMAB,过点F作FNAB,过点G作GHAB,根据探究(1)的证明过程及方法,可推出E+G=B+F+D,则可由此得出规律,并得出E1+E2+En=B+F1+F2+Fn-1+D;(3)如图,过点M作EFAB,过点N作GHAB,则可由平行线的性质得出1+2+MNG =1802,依此即可得出此题结论【详解】解:(1)过点E作EF/AB, B=BEF BEF+FED=BED,B+FED=BED B+D=E(已知),FED=D CD/EF(内错角相等,两直线平行)AB/CD (2)过点E作EMA

11、B,过点F作FNAB,过点G作GHAB,ABCD,ABEMFNGHCD,B=BEM,MEF=EFN,NFG=FGH,HGD=D,BEF+FGD=BEM+MEF+FGH+HGD=B+EFN+NFG+D=B+EFG+D,即E+G=B+F+D由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,E1+E2+En=B+F1+F2+Fn-1+D 故答案为:E1+E2+En=B+F1+F2+Fn-1+D(3)如图,过点M作EFAB,过点N作GHAB, APM+PME=180,EFAB,GHAB,EFGH,EMN+MNG=180,1+2+MNG =1802,依次类推:1+2+n-1+n=(n-1)1

12、80故答案为:(n-1)180【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形6已知,(1)如图1,求证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数解析:(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的

13、含义及平行线的性质,即可得出答案【详解】(1)证明:;(2)过点E作,延长DC至Q,过点M作,AF平分FH平分设,【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键7已知:ABCD点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,GFBCEH(1)如图1,求证:GFEH;(2)如图2,若GEH,FM平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明解析:(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平

14、行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,平分,由(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键8如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG40,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由解析:(1)ABC

15、100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,ABCHAB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角形内角和定理便可求得结果【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB1

16、20,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BPHDGE,过F作FQHDGE,如图2,ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+BCG,AFCHAF+FCG,DAB120,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,HAF30,FCG40,ABC60+2080,AFC30+4070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,PN平分APC,NPCHAP+PCG,PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180H

17、APPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点9已知,在平面直角坐标系中,ABx轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C(1)则a,b,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作BOGAOB,交BC于点G,连CE交OG于点F,当点E在线段O

18、B上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值 解析:(1);(2);(3)不变,值为2【分析】(1)根据,即可得出a,b的值,再根据平移的性质得出,因为点C在y轴负半轴,即可得出点C的坐标;(2)过点D分别作DMx轴于点M, DNy轴于点N,连接OD,在中用等面积法即可求出m和n的关系式;(3)分别过点E,F作EPOA, FQOA分别交y轴于点P,点Q,根据平行线的性质,得出 进而得到的值【详解】(1)解:, 且C在y轴负半轴上,,故填:;(2)如图1,过点D分别作DMx轴于点M, DNy轴于点N,连接OD AB x轴于点B,且点A,D,C三点的坐标分别为: ,,又

19、SBOC = SBODSCOD=OBMDOCND ,;(3)解:的值不变,值为2理由如下:如图所示,分别过点E,F作EPOA, FQOA分别交y轴于点P,点Q,线段OC是由线段AB平移得到,BCOA,又EPOA,EPBC,GCF=PEC,EPOA,AOE=OEP,OEC=OEP+PEC=AOE+GCF,同理:OFC=AOF+GCF,又AOB=BOG,OFC=2AOE+GCF,【点睛】本题主要考查了非负数的性质,坐标与图形,平行线的判定与性质,以及平移的性质,解决问题的关键是作辅助线,运用等面积法,角的和差关系以及平行线的性质进行求解10如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面

20、积等于18(1)求点的坐标;(2)如图,点从点出发,沿轴正方向运动,点运动至点停止,同时点从点出发,沿轴正方向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围;(3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标解析:(1);(2)();(3)的值为4,点的坐标是【分析】(1)根据AOB的面积可求得OA的长,即可求得点A的坐标;(2)由题意可分别得,由三角形面积公式即可得结果,由点Q只在线段OB上运动,从而可得t的取值范围;(3)利用割补方法,由则可求得t的值;连接OE,由可求得OF的长,从而求得点F

21、的坐标【详解】(1)B(-6,0),OB=6,OA=6 ,(2),()(3),解得,则,连接,如图,点坐标为综上所述:的值为4,点的坐标是【点睛】本题考查了代数式,三角形面积,用到了割补方法,也是本题的关键和难点11已知,ABCD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数解析:(1)见解析;(2)见解析;(3)4

22、0【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEMED,GMEGMQ+QMEBGM+MED,HPAB,BGHGHP2BGM,HPCD,PHEHED2MED,

23、GHEGHP+PHE2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键12如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分

24、别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且OAB的面积为6(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及BPQ的面积解析:(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题;(2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时; (3)过点K作KHOA用H根据SBPK+SAKH=SAO

25、B-S长方形OPKH,构建方程求出t,即可解决问题;【详解】解:(1),2(a+2)-3(a-2)=6,-a+4=0,a=4,A(4,0),SOAB=6,4OB=6,OB=3,B(0,3)(2)当点P在线段OB上时,S=PQPB=4(3-t)=-2t+6当点P在线段OB的延长线上时,S=PQPB=4(t-3)=2t-6综上所述,S=(3)过点K作KHOA用HSBPK+SAKH=SAOB-S长方形OPKH,PKBP+AHKH=6-PKOP,(3-t)+(4-)t=6-t,解得t=1,SBPQ=-2t+6=4【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会

26、利用参数构建方程解决问题,属于中考压轴题13在平面直角坐标系中,点,的坐标分别为,且,满足方程为二元一次方程(1)求,的坐标(2)若点为轴正半轴上的一个动点如图1,当时,与的平分线交于点,求的度数;如图2,连接,交轴于点若成立设动点的坐标为,求的取值范围解析:(1)点的坐标为,点的坐标为;(2)45;【分析】(1)根据可得,即可求得a、c的值,坐标可求;2)作PHAD,根据角平分线的定义、平行线的性质计算,得到答案;连接AB,交y轴于F,根据点的坐标特征分别求出SABC、SABD,根据题意列出不等式,解不等式即可【详解】解:(1)由题意得,解得,则点的坐标为,点的坐标为;(2)如图1,作,与的

27、平分线交于点,; 连接,交轴于,即,过作轴的平行线,作、垂直,交于点、,由题意得,解得,点为轴正半轴上的一个动点,【点睛】本题考查的是二元一次方程的定义、平行线的性质、坐标与图形性质、三角形的面积计算,一元一次不等式,掌握平行线的性质、三角形面积公式是解题的关键14在平面直角坐标系中,点、在坐标轴上,其中、满足(1)求、两点的坐标;(2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标;(3)平移线段到,若点、也在坐标轴上,如图2所示为线段上的一动点(不与、重合),连接、平分,求证:解析:(1),两点的坐标分别为,;(2)点的坐标是;(3)证明见解析【分析】(1)根据非负数

28、的性质得出二元一次方程组,求解即可;(2)过点B作y轴的平行线分别与过点A,C作x轴的平行线交于点N,点M,过点C作y轴的平行线与过点A作x轴的平行线交于点T,根据三角形的面积长方形的面积(三角形的面积三角形的面积三角形的面积)列出方程,求解得出点C的坐标,由平移的规律可得点D的坐标;(3)过点作,交轴于点,过点作,交于点,根据两直线平行,内错角相等与已知条件得出,同样可证,由平移的性质与平行公理的推论可得,最后根据,通过等量代换进行证明【详解】解:(1),又,即,解方程组得,两点的坐标分别为,;(2)如图,过点B作y轴的平行线分别与过点A,C作x轴的平行线交于点N,点M,过点C作y轴的平行线

29、与过点A作x轴的平行线交于点T,三角形的面积长方形的面积(三角形的面积三角形的面积三角形的面积),根据题意得,化简,得,解得,依题意得,即点的坐标为,依题意可知,点的坐标是由点的坐标先向左平移个单位长度,再向下平移个单位长度得到的,从而可知,点的坐标是由点的坐标先向左平移个单位长度,再向下平移个单位长度得到的,点的坐标是; (3)证明:过点作,交轴于点,如图所示,则,过点作,交于点,如图所示,则,平分,由平移得,【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键15对于不为0的一位数和一个两位数,将

30、数放置于两位数之前,或者将数放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为例如:当,时,可以得到168,618较大三位数减去较小三位数的差为,而,所以(1)计算:(2)若是一位数,是两位数,的十位数字为(,为自然数),个位数字为8,当时,求出所有可能的,的值解析:(1) =6;(2)a=3,b=78或a=7,b=78.【分析】(1) =(217-127)15=6;(2)分1a5,a=5,5a9三种情形讨论计算.【详解】(1) 当,时,可以得到217,127较大三位数减去较小三位数的差为,而,(2)当,时,可以得a50,5a0三位数分别

31、为100a+50,500+10a,当1a5时,(500+10a)-(100a+50)=450-90a,而,=,=;当a=5时,(500+10a)-(100a+50)=0,而,=0,=0;当5a9时,(100a+50)-(500+10a)=90a-450,而,=,=a-5;当,时,可以得900+10x+8,100x+98,(900+10x+8)-(100x+98)=810-90x,而,=,=;当1a5时,5-a+27-3x=8,a+3x=24,当a=1时,x=(舍去),当a=2时,x=(舍去),当a=3时,x=7,当a=4时,x=(舍去),a=3,b=78;当a=5时,则27-3x=8,x=(舍

32、去),当5a9时,则a-5+27-3x=8,3x-a=14,当a=6时,x=(舍去),当a=7时,x=7,当a=8时,x=(舍去),当a=9时,x=(舍去),a=7,b=78;综上所述,a=3,b=78或a=7,b=78.【点睛】本题考查了新定义问题和二元一次方程的整数解,准确理解新定义的意义,灵活运用分类思想和枚举法是解题的关键.16在平面直角坐标系中,点,点,点(1)的面积为_;(2)已知点,那么四边形的面积为_(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m表示格点多边形内的格点数,n表示格点多边形边上的格点数,那么格点多边形的面积S和m与n之间满足一种

33、数量关系例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m边界格点数n格点多边形面积S611四边形811五边形208根据上述的例子,猜测皮克公式为_(用m,n表示),试计算图中六边形的面积为_(本大题无需写出解题过程,写出正确答案即可)解析:(1)10.5;(2)12.5;(3)10.5,12.5,23;30【分析】(1)画出图形,根据三角形的面积公式求解;(2)画出图形,利用割补法求解;(3)设S=am+bn+c,其中a,b,c为常数,根据表中数据列方程组求出a,b,c,然后根据公式即可求出六边形的面积【详解】(1)如图1,的底为7,高为3,所以面积为,故答案为:10.5;

34、(2)如图2,故答案为:12.5;(3)由(1)、(2)可填表格如下:形内格点数m边界格点数n格点多边形面积S61110.5四边形81112.5五边形20823设S= am+bn+c,其中a,b为常数,由题意得,解得,皮克公式为,六边形中,m=27,n=8,六边形的面积为=30【点睛】本题考查了坐标与图形的性质,三角形的面积,三元一次方程组的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题17在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点(1)若,求C点的坐标;(2)若,连接,过点B作的垂线l判断直线l与x

35、轴的位置关系,并说明理由;已知E是直线l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数负数还是0?并说明理由解析:(1)(-1,-2);(2)结论:直线lx轴证明见解析;结论:(s-m)+(t-n)=0证明见解析【分析】(1)利用非负数的性质求出a,b的值,可得结论(2)求出A,D的纵坐标,证明ADx轴,可得结论判断出D(m+1,n-1),利用待定系数法,构建方程组解决问题即可【详解】解:(1),又,点先向右平移2个单位,再向下平移1个单位得到点,(2)结论:直线轴理由:,向右平移个单位,再向下平移1个单位得到点,的纵坐标相同,轴,直线,直

36、线轴结论:理由:是直线上一点,连接,且的最小值为1,点,及点都是关于,的二元一次方程的解为坐标的点,得到,得到,【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型18若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”例如:关于x的代数式,当-1x 1时,代数式在x=1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1x1这个范围内,则称代数式是-1x1的“湘一代数式”(1)若关于的代数式,当时,取得的最大值为 ,最

37、小值为 ,所以代数式 (填“是”或“不是”)的“湘一代数式”(2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值(3)若关于的代数式是的“湘一代数式”,求m的取值范围解析:(1)是(2)a的最大值为,最小值为;(3)【分析】(1)先求解当时,的最大值与最小值,再根据定义判断即可;(2)当时,得分 ,分别求解在内时的最大值与最小值,再列不等式组即可得到答案;(3)当时,分,两种情况分别求解的最大值与最小值,再列不等式(组)求解即可【详解】解:(1) 当时,取最大值,当时,取最小值 所以代数式是的“湘一代数式”故答案为:是(2), 0|x|2, 当a0时,x=0时, 有最大值为, x=2或

38、-2时,有最小值为 所以可得不等式组,由得:由得:所以: a0时,x=0时, 有最小值为, x=2或-2时, 的有大值为 所以可得不等式组,由得: 由得:所以:,综上可得, 所以a的最大值为,最小值为(3) 是的“湘一代数式”,当时,的最大值是 最小值是 当时, 当时,取最小值 当时,取最大值, 解得: 综上:的取值范围是:【点睛】本题考查的是新定义情境下的不等式或不等式组的应用,理解定义列不等式(组)是解题的关键19对于实数x,若,则符合条件的中最大的正数为的内数,例如:8的内数是5;7的内数是4(1)1的内数是_,20的内数是_,6的内数是_;(2)若3是x的内数,求x的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为,例如当时,如图2;当时,如图2,;用表示的内数;当的内数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标(若有多点并列最远,全部写出)解析:(1)2,7,4;(2);(3)t的内数;符合条件的最大实心正方形有2个,离原点最远的格点的坐标有两个,为【分析】(1)根据内数的

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服