1、中考数学平行四边形-经典压轴题附详细答案一、平行四边形1四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H(1)如图1,当点E、F在线段AD上时,求证:DAG=DCG;猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出BHO的度数【答案】(1)证明见解析;AGBE理由见解析;(2)证明见解析;(3)BHO=45【解析】试题分析:(1)根据正方形的性质得
2、DA=DC,ADB=CDB=45,则可根据“SAS”证明ADGCDG,所以DAG=DCG;根据正方形的性质得AB=DC,BAD=CDA=90,根据“SAS”证明ABEDCF,则ABE=DCF,由于DAG=DCG,所以DAG=ABE,然后利用DAG+BAG=90得到ABE+BAG=90,于是可判断AGBE;(2)如答图1所示,过点O作OMBE于点M,ONAG于点N,证明AONBOM,可得四边形OMHN为正方形,因此HO平分BHG结论成立;(3)如答图2所示,与(1)同理,可以证明AGBE;过点O作OMBE于点M,ONAG于点N,构造全等三角形AONBOM,从而证明OMHN为正方形,所以HO平分B
3、HG,即BHO=45试题解析:(1)四边形ABCD为正方形,DA=DC,ADB=CDB=45,在ADG和CDG中,ADGCDG(SAS),DAG=DCG;AGBE理由如下:四边形ABCD为正方形,AB=DC,BAD=CDA=90,在ABE和DCF中,ABEDCF(SAS),ABE=DCF,DAG=DCG,DAG=ABE,DAG+BAG=90,ABE+BAG=90,AHB=90,AGBE;(2)由(1)可知AGBE如答图1所示,过点O作OMBE于点M,ONAG于点N,则四边形OMHN为矩形MON=90,又OAOB,AON=BOMAON+OAN=90,BOM+OBM=90,OAN=OBM在AON与
4、BOM中,AONBOM(AAS)OM=ON,矩形OMHN为正方形,HO平分BHG(3)将图形补充完整,如答图2示,BHO=45与(1)同理,可以证明AGBE过点O作OMBE于点M,ONAG于点N,与(2)同理,可以证明AONBOM,可得OMHN为正方形,所以HO平分BHG,BHO=45考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质2在四边形中,对角线平分.(1)如图1,若,且,试探究边、与对角线的数量关系并说明理由.(2)如图2,若将(1)中的条件“”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若,探究边、与对角线的数量关系并说明理由.【答案】(1).证明见解
5、析;(2)成立;(3).理由见解析.【解析】试题分析:(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立以C为顶点,AC为一边作ACE=60,ACE的另一边交AB延长线于点E,只要证明DACBEC即可解决问题;(3)结论:AD+ABAC过点C作CEAC交AB的延长线于点E,只要证明ACE是等腰直角三角形,DACBEC即可解决问题;试题解析:解:(1)AC=AD+AB理由如下:如图1中,在四边形ABCD中,D+B=180,B=90,D=90,DAB=120,AC平分DAB,DAC=BAC=60,B=90,ABAC,同理ADACAC=AD+AB(2)
6、(1)中的结论成立,理由如下:以C为顶点,AC为一边作ACE=60,ACE的另一边交AB延长线于点E,BAC=60,AEC为等边三角形,AC=AE=CE,D+ABC=180,DAB=120,DCB=60,DCA=BCE,D+ABC=180,ABC+EBC=180,D=CBE,CA=CE,DACBEC,AD=BE,AC=AD+AB(3)结论:AD+ABAC理由如下:过点C作CEAC交AB的延长线于点E,D+B=180,DAB=90,DCB=90,ACE=90,DCA=BCE,又AC平分DAB,CAB=45,E=45AC=CE又D+ABC=180,D=CBE,CDACBE,AD=BE,AD+AB=
7、AE在RtACE中,CAB=45,AE.3在ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合)过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当ABC=90时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CFAE|=2,EF=2,当POF为等腰三角形时,请直接写出线段OP的长【答案】(1)OF =OE;(2)OFEK,OF=OE,理由见解析;(3)OP的长为或.【解析】【分析】(1)如图1中,延长EO交CF于K,证明AOECOK,从而可得OE=OK,再
8、根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明ABEBCF,AOECOK,继而可证得EFK是等腰直角三角形,由等腰直角三角形的性质即可得OFEK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,AEBE,CFBE,AECK,EAO=KCO,OA=OC,AOE=COK,AOECOK,OE=OK,EFK是直角三角形,OF=EK=OE;(2)如图2中,延长EO交CF于K,ABC=AEB=CFB=90,ABE+BAE=90,ABE+CBF=90,BAE=CBF,AB=BC,ABEBC
9、F,BE=CF,AE=BF,AOECOK,AE=CK,OE=OK,FK=EF,EFK是等腰直角三角形,OFEK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PHOF于H,|CFAE|=2,EF=2,AE=CK,FK=2,在RtEFK中,tanFEK=,FEK=30,EKF=60,EK=2FK=4,OF=EK=2,OPF是等腰三角形,观察图形可知,只有OF=FP=2,在RtPHF中,PH=PF=1,HF=,OH=2,OP=.如图4中,点P在线段OC上,当PO=PF时,POF=PFO=30,BOP=90,OP=OE=,综上所述:OP的长为或.【点睛】本题考查了全等三角形的判
10、定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.4如图,四边形ABCD中,ADBC,A=90,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长【答案】(1)证明见解析(2)2【解析】(1)AFBC,DCB=CDF,FBC=BFD,点E为CD的中点,DE=EC,在BCE与FDE中,BCEFDE,DF=BC,又DFBC,四边形BCDF为平行四边形,BD=BC,四边形BCFD是菱形;(2)四边形BCFD是菱形,BD=DF=BC=2,
11、在RtBAD中,AB=,AF=AD+DF=1+2=3,在RtBAF中,BF=25如图,四边形ABCD中,BCD=D=90,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当B=70时,求AEC的度数;(3)当ACE为直角三角形时,求边BC的长.【答案】(1);(2)AEC=105;(3)边BC的长为2或.【解析】试题分析:(1)过A作AHBC于H,得到四边形ADCH为矩形在BAH中,由勾股定理即可得出结论(2)取CD中点T,连接TE,则TE是梯形中位线,得ETAD,ETCD,AET=B=70又AD=AE=1,得到AED=ADE=
12、DET=35由ET垂直平分CD,得CET=DET=35,即可得到结论 (3)分两种情况讨论:当AEC=90时,易知CBECAECAD,得BCE=30,解ABH即可得到结论当CAE=90时,易知CDABCA,由相似三角形对应边成比例即可得到结论试题解析:解:(1)过A作AHBC于H由D=BCD=90,得四边形ADCH为矩形在BAH中,AB=2,BHA=90,AH=y,HB=, 则(2)取CD中点T,联结TE,则TE是梯形中位线,得ETAD,ETCD,AET=B=70又AD=AE=1,AED=ADE=DET=35由ET垂直平分CD,得CET=DET=35,AEC=7035=105 (3)分两种情况
13、讨论:当AEC=90时,易知CBECAECAD,得BCE=30,则在ABH中,B=60,AHB=90,AB=2,得BH=1,于是BC=2当CAE=90时,易知CDABCA,又,则(舍负)易知ACE90,所以边BC的长为综上所述:边BC的长为2或点睛:本题是四边形综合题考查了梯形中位线,相似三角形的判定与性质解题的关键是掌握梯形中常见的辅助线作法6已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P为点D的对应点,再将纸片还原。(I)若点P落在矩形OBCD的边OB上,如图,当点E与点O重合时,求点F的坐标;如图,
14、当点E在OB上,点F在DC上时,EF与DP交于点G,若,求点F的坐标:()若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可)。 【答案】(I)点F的坐标为;点F的坐标为;(II)【解析】【分析】(I)根据折叠的性质可得,再由矩形的性质,即可求出F的坐标;由折叠的性质及矩形的特点,易得,得到,再加上平行,可以得到四边形DEPF是平行四边形,在由对角线垂直,得出 是菱形,设菱形的边长为x,在中,由勾股定理建立方程即可求解;()当O,P,F点共线时OP的长度最短.【详解】解:(I)折痕为EF,点P为点D的对应点四边形OBCD是矩形,点F
15、的坐标为折痕为EF,点P为点D的对应点.四边形OBCD是矩形,;四边形DEPF是平行四边形.,是菱形. 设菱形的边长为x,则,在中,由勾股定理得 解得 点F的坐标为 ()【点睛】此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题7已知AD是ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当ABAC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与BPE面积相等的
16、三角形(不包括BPE本身)【答案】(1)见解析;(2)APE、APF、CPF、PGH【解析】【分析】(1)由三角形中位线定理得出EGAP,EFBC,EF=BC,GHBC,GH=BC,推出EFGH,EF=GH,证得四边形EGHF是平行四边形,证得EFAP,推出EFEG,即可得出结论;(2)由APE与BPE的底AE=BE,又等高,得出SAPE=SBPE,由APE与APF的底EP=FP,又等高,得出SAPE=SAPF,由APF与CPF的底AF=CF,又等高,得出SAPF=SCPF,证得PGH底边GH上的高等于AEF底边EF上高的一半,推出SPGH=SAEF=SAPF,即可得出结果【详解】(1)证明:
17、E、F、G、H分别是AB、AC、PB、PC的中点,EGAP,EFBC,EFBC,GHBC,GHBC,EFGH,EFGH,四边形EGHF是平行四边形,ABAC,ADBC,EFAP,EGAP,EFEG,平行四边形EGHF是矩形;(2)PE是APB的中线,APE与BPE的底AEBE,又等高,SAPESBPE,AP是AEF的中线,APE与APF的底EPFP,又等高,SAPESAPF,SAPFSBPE,PF是APC的中线,APF与CPF的底AFCF,又等高,SAPFSCPF,SCPFSBPE,EFGHBC,E、F、G、H分别是AB、AC、PB、PC的中点,AEF底边EF上的高等于ABC底边BC上高的一半
18、,PGH底边GH上的高等于PBC底边BC上高的一半,PGH底边GH上的高等于AEF底边EF上高的一半,GHEF,SPGHSAEFSAPF,综上所述,与BPE面积相等的三角形为:APE、APF、CPF、PGH【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键8如图1,在ABC中,ABAC,ADBC于D,分别延长AC至E,BC至F,且CEEF,延长FE交AD的延长线于G(1)求证:AEEG;(2)如图2,分别连接BG,BE,若BGBF,求证:BEEG;(3)如图3,取GF的中点M,若AB5,求EM的
19、长【答案】(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:CADG,可得AEEG;(2)作辅助线,证明BEFGEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EMDNAC,计算可得结论【详解】证明:(1)如图1,过E作EHCF于H,ADBC,EHAD,CEHCAD,HEFG,CEEF,CEHHEF,CADG,AEEG;(2)如图2,连接GC,ACBC,ADBC,BDCD,AG是BC的垂直平分线,GCGB,GBFBCG,BGBF,GCBE,CEEF,CEF1802F,BGBF,GBF180
20、2F,GBFCEF,CEFBCG,BCECEF+F,BCEBCG+GCE,GCEF,在BEF和GCE中,BEFGEC(SAS),BEEG;(3)如图3,连接DM,取AC的中点N,连接DN,由(1)得AEEG,GAEAGE,在RtACD中,N为AC的中点,DNACAN,DANADN,ADNAGE,DNGF,在RtGDF中,M是FG的中点,DMFGGM,GDMAGE,GDMDAN,DMAE,四边形DMEN是平行四边形,EMDNAC,ACAB5,EM【点睛】本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关
21、键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键9正方形ABCD,点E在边BC上,点F在对角线AC上,连AE(1)如图1,连EF,若EFAC,4AF3AC,AB4,求AEF的周长;(2)如图2,若AFAB,过点F作FGAC交CD于G,点H在线段FG上(不与端点重合),连AH若EAH45,求证:ECHG+FC【答案】(1);(2)证明见解析【解析】【分析】(1)由正方形性质得出ABBCCDAD4,BD90,ACBACDBACACD45,得出ACAB4,求出AF3,CFACAF,求出CEF是等腰直角三角形,得出EFCF,CECF2,在RtAEF中,由勾股定理求出AE,
22、即可得出AEF的周长;(2)延长GF交BC于M,连接AG,则CGM和CFG是等腰直角三角形,得出CMCG,CGCF,证出BMDG,证明RtAFGRtADG得出FGDG,BMFG,再证明ABEAFH,得出BEFH,即可得出结论【详解】(1)四边形ABCD是正方形,ABBCCDAD4,BD90,ACBACDBACACD45,ACAB4,4AF3AC12,AF3,CFACAF,EFAC,CEF是等腰直角三角形,EFCF,CECF2,在RtAEF中,由勾股定理得:AE,AEF的周长AE+EF+AF;(2)证明:延长GF交BC于M,连接AG,如图2所示:则CGM和CFG是等腰直角三角形,CMCG,CGC
23、F,BMDG,AFAB,AFAD,在RtAFG和RtADG中,RtAFGRtADG(HL),FGDG,BMFG,BACEAH45,BAEFAH,FGAC,AFH90,在ABE和AFH中,ABEAFH(ASA),BEFH,BMBE+EM,FGFH+HG,EMHG,ECEM+CM,CMCGCF,ECHG+FC【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键10如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EFEC,且EFEC(1)求证:AEFDCE(2)若DE4cm,矩形
24、ABCD的周长为32cm,求AE的长【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EFCE,求证AEF=ECD再利用AAS即可求证AEFDCE(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:EFCE,FEC=90,AEF+DEC=90,而ECD+DEC=90,AEF=ECD在RtAEF和RtDEC中,FAE=EDC=90,AEF=ECD,EF=ECAEFDCE(2)解:AEFDCEAE=CDAD=AE+4矩形ABCD的周长为32cm,2(AE+AE+4)=32解得,AE=6(cm)答:AE的长为6cm点睛:此题主
25、要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目11问题情境在四边形ABCD中,BABC,DCAC,过点D作DEAB交BC的延长线于点E,M是边AD的中点,连接MB,ME. 特例探究(1)如图1,当ABC90时,写出线段MB与ME的数量关系,位置关系; (2)如图2,当ABC120时,试探究线段MB与ME的数量关系,并证明你的结论; 拓展延伸(3)如图3,当ABC时,请直接用含的式子表示线段MB与ME之间的数量关系【答案】(1)MBME,MBME;(2)MEMB证明见解析;(3)MEMBtan.【解析】【分析】(1)如图1中,连接CM只要证明
26、MBE是等腰直角三角形即可;(2)结论:EM=MB只要证明EBM是直角三角形,且MEB=30即可;(3)结论:EM=BMtan证明方法类似;【详解】(1) 如图1中,连接CMACD=90,AM=MD,MC=MA=MD,BA=BC,BM垂直平分AC,ABC=90,BA=BC,MBE=ABC=45,ACB=DCE=45,ABDE,ABE+DEC=180,DEC=90,DCE=CDE=45,EC=ED,MC=MD,EM垂直平分线段CD,EM平分DEC,MEC=45,BME是等腰直角三角形,BM=ME,BMEM故答案为BM=ME,BMEM(2)MEMB证明如下:连接CM,如解图所示DCAC,M是边AD
27、的中点,MCMAMDBABC,BM垂直平分ACABC120,BABC,MBEABC60,BACBCA30,DCE60.ABDE,ABEDEC180,DEC60,DCEDEC60,CDE是等边三角形,ECEDMCMD,EM垂直平分CD,EM平分DEC,MECDEC30,MBEMEB90,即BME90.在RtBME中,MEB30,MEMB(3) 如图3中,结论:EM=BMtan理由:同法可证:BMEM,BM平分ABC,所以EM=BMtan【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所
28、学知识解决问题12如图,抛物线y=mx2+2mx+n经过A(3,0),C(0,)两点,与x轴交于另一点B(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CEx轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由【答案】(1)y=x2+x;(2)F点坐标为(1,1);(3)四边形CDEF是菱形证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CEx轴
29、,可知C、E关于对称轴对称。根据A、C点求得直线AC的解析式,根据B、E点求出直线BE的解析式,联立方程求得的解,即为F点的坐标;由E、C、F、D的坐标可知DF和EC互相垂直平分,则可判定四边形CDEF为菱形【详解】(1)抛物线y=mx2+2mx+n经过A(3,0),C(0,)两点,解得,抛物线解析式为y=x2+x;(2)y=x2+x,抛物线对称轴为直线x=1,CEx轴,C、E关于对称轴对称,C(0,),E(2,),A、B关于对称轴对称,B(1,0),设直线AC、BE解析式分别为y=kx+b,y=kx+b,则由题意可得,解得,直线AC、BE解析式分别为y=x,y=x,联立两直线解析式可得,解得
30、,F点坐标为(1,1);(3)四边形CDEF是菱形证明:y=x2+x=(x+1)22,D(1,2),F(1,1),DFx轴,且CEx轴,DFCE,C(0,),且F(1,1),D(1,2),DF和CE互相平分,四边形CDEF是菱形【点睛】本题考查菱形的判定方法,二次函数的性质,以及二次函数与二元一次方程组13如图,AB为O的直径,点E在O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交O于点F,交切线于点C,连接AC(1)求证:AC是O的切线;(2)连接EF,当D=时,四边形FOBE是菱形【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出,根据圆
31、的位置关系证得AC是O的切线.(2)根据四边形FOBE是菱形,得到OF=OB=BF=EF,得证为等边三角形,而得出,根据三角形内角和即可求出答案.【详解】(1)证明:CD与O相切于点E,又,OBE=COAOE=OB,又OC=OC,OA=OE,又AB为O的直径,AC为O的切线;(2)解:四边形FOBE是菱形,OF=OB=BF=EF,OE=OB=BE,为等边三角形,而,故答案为30【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.14已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,BAC=90
32、,如图1所示(1)填空:AB= ,BC= (2)将ABC绕点B逆时针旋转,当AC与x轴平行时,则点A的坐标是当旋转角为90时,得到BDE,如图2所示,求过B、D两点直线的函数关系式在的条件下,旋转过程中AC扫过的图形的面积是多少?(3)将ABC向右平移到ABC的位置,点C为直线AB上的一点,请直接写出ABC扫过的图形的面积【答案】(1):5;5;(2)(0,2);直线BD的解析式为y=x+3;S=;(3)ABC扫过的面积为【解析】试题分析:(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A、B两点的坐标,利用勾股定理即可解答;(2)因为B(0,3),所以OB=3,所以AB=5,所以A
33、O=AB-BO=5-3=2,所以A(0,-2);过点C作CFOA与点F,证明AOBCFA,得到点C的坐标,求出直线AC解析式,根据ACBD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90圆心角的扇形面积减去以AB为半径90圆心角的扇形面积求出答案;(3)利用平移的性质进而得出ABC扫过的图形是平行四边形的面积试题解析:(1)一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,A(-4,0),B(0,3),AO=4,BO=3,在RtAOB中,AB=,等腰直角三角形ABC,BAC=90,B
34、C=;(2)如图1,B(0,3),OB=3,AB=5,AO=AB-BO=5-3=2,A(0,-2)当在x轴上方时,点A的坐标为(0,8),如图2,过点C作CFOA与点F,ABC为等腰直角三角形,BAC=90,AB=AC,BAO+CAF=90,OBA+BAO=90,CAF=OBA,在AOB和CFA中,AOBCFA(AAS);OA=CF=4,OB=AF=3,OF=7,CF=4,C(-7,4)A(-4,0)设直线AC解析式为y=kx+b,将A与C坐标代入得:,解得:,则直线AC解析式为y=x,将ABC绕点B逆时针旋转,当旋转角为90时,得到BDE,ABD=90,CAB=90,ABD=CAB=90,A
35、CBD,设直线BD的解析式为y=x+b1,把B(0,3)代入解析式的:b1=3,直线BD的解析式为y=x+3;因为旋转过程中AC扫过的图形是以BC为半径90圆心角的扇形面积减去以AB为半径90圆心角的扇形面积,所以可得:S=;(3)将ABC向右平移到ABC的位置,ABC扫过的图形是一个平行四边形和三角形ABC,如图3:将C点的纵坐标代入一次函数y=x+3,求得C的横坐标为,平行四边CAAC的面积为(7+)4=,三角形ABC的面积为55=ABC扫过的面积为:考点:几何变换综合题15倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径下面是一案例,请同学们认
36、真阅读、研究,完成“类比猜想”的问题习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,EAF=45,连接EF,则EF=BE+DF,说明理由解答:正方形ABCD中,AB=AD,BAD=ADC=B=90,把ABE绕点A逆时针旋转90至ADE,点F、D、E在一条直线上EAF=90-45=45=EAF,又AE=AE,AF=AFAEFAEF(SAS)EF=EF=DE+DF=BE+DF类比猜想:(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当BAD=120,EAF=60时,还有EF=BE+DF吗?请说明理由(2)在四边形ABCD中,点E、F分别在BC、CD上,
37、当AB=AD,B+D=180,EAF=BAD时,EF=BE+DF吗?请说明理由【答案】证明见解析【解析】试题分析:(1)把ABE绕点A逆时针旋转120至ADE,如图(2),连结EF,根据菱形和旋转的性质得到AE=AE,EAF=EAF,利用“SAS”证明AEFAEF,得到EF=EF;由于ADE+ADC=120,则点F、D、E不共线,所以DE+DFEF,即由BE+DFEF;(2)把ABE绕点A逆时针旋转BAD的度数至ADE,如图(3),根据旋转的性质得到AE=AE,EAF=EAF,然后利用“SAS”证明AEFAEF,得到EF=EF,由于ADE+ADC=180,知F、D、E共线,因此有EF=DE+D
38、F=BE+DF;根据前面的条件和结论可归纳出结论试题解析:(1)当BAD=120,EAF=60时,EF=BE+DF不成立,EFBE+DF理由如下:在菱形ABCD中,BAD=120,EAF=60,AB=AD,1+2=60,B=ADC=60,把ABE绕点A逆时针旋转120至ADE,如图(2),连结EF,EAE=120,1=3,AE=AE,DE=BE,ADE=B=60,2+3=60,EAF=EAF,在AEF和AEF中,AEFAEF(SAS),EF=EF,ADE+ADC=120,即点F、D、E不共线,DE+DFEFBE+DFEF;(2)当AB=AD,B+D=180,EAF=BAD时,EF=BE+DF成立理由如下:如图(3),AB=AD,把ABE绕点A逆时针旋转BAD的度数至ADE,如图(3),EAE=BAD,1=3,AE=AE,DE=BE,ADE=B,B+D=180,ADE+D=180,点F、D、E共线,EAF=BAD,1+2=BAD,2+3=BAD,EAF=EAF,在AEF和AEF中,AEFAEF(SAS),EF=EF,EF=DE+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,EF=BE+DF考点:四边形综合题
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100