1、人教人教版七年级数学下册期中考试试题(含答案)_图文一、选择题19的算术平方根是()ABC3D-32下列图案中,是通过下图平移得到的是( )ABCD3如果在第三象限,那么点在( )A第一象限B第二象限C第三象限D第四象限4下列命题中是假命题的是( )A等角的补角相等B平行于同一条直线的两条直线平行C对顶角相等D同位角相等5如图, ,若,则下列说法正确的是( )ABCD6下列运算正确的是()A=6BC=2D23=57珠江流域某江段江水流向经过B、C、D三点,拐弯后与原来方向相同如图,若ABC120,BCD80,则CDE等于()A20B40C60D808如图,过点作直线:的垂线,垂足为点,过点作轴
2、,垂足为点,过点作,垂足为点,这样依次作下去,得到一组线段:,则线段的长为( )ABCD二、填空题9已知是实数,且则的值是_.10已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是_11如图,DB是的高,AE是角平分线,则_12如图,直线ab,直角三角形的直角顶点在直线b上,已知1=48,则2的度数是_度13如图,将长方形纸片沿折叠,使得点落在边上的点处,点落在点处,若,则的度数为_14材料:一般地,n个相同因数a相乘:记为如,此时3叫做以2为底的8的对数,记为(即)那么_,_15如图,已知,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为_16如图,在平面直角坐标系中,三角形,
3、三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,的等腰直角三角形若三角形的顶点坐标分别为,则按图中规律,点的坐标为_三、解答题17计算:(1) (2) 18求下列各式中x的值(1)4x2250;(2)(2x1)36419完成下面的证明如图,已知ADBC,EFBC,12,求证:BAC+AGD180证明:ADBC,EFBC(已知),EFB90,ADB90( ),EFBADB(等量代换),EFAD( ),1BAD( ),又12(已知),2 (等量代换),DGBA(内错角相等,两直线平行),BAC+AGD180( )20如图,在平面直角坐标系中,三角形三个顶点的坐标分别为点P是三角形的边上任意一
4、点,三角形经过平移后得到三角形,已知点的对应点(1)在图中画出平移后的三角形,并写出点的坐标;(2)求三角形的面积21我们知道是无理数,其整数部分是1,于是小明用1来表示的小数部分请解答下列问题:(1)的整数部分是 ,小数部分是 (2)如果的小数部分为a,的整数部分为b,求ab的值;(3)已知10xy,其中x是整数,且0y1,求xy的相反数22(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为正方形的周长为,则_(填“”,或“”,或“”)(3)如图2,若正方形的面积为,李明同学想沿
5、这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?23已知,点为平面内一点,于(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2)问的条件下,点、在上,连接、,且平分,平分,若,求的度数【参考答案】一、选择题1C解析:C【分析】根据一个非负数的正的平方根,即为这个数的算术平方根解答即可【详解】解:9的算术平方根是3,故选C【点睛】本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键2C【分析】根据平移的性质,即可解答【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转
6、才能实现故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变解析:C【分析】根据平移的性质,即可解答【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键3B【分析】根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解【详解】解:点P(a,b)在第三象限,a0,b0,a+b0,ab0,点Q(a+b,ab)在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号
7、特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】根据等角的补角,平行线的性质,对顶角的性质,进行判断【详解】A. 等角的补角相等,是真命题,不符合题意;B. 平行于同一条直线的两条直线平行,是真命题,不符合题意;C. 对顶角相等,是真命题,不符合题意;D. 两直线平行,同位角相等,原命题是假命题,符合题意;故选D【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识5D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:BECD 2+
8、C=180, 3+D=180 2=50, 3=120C=130,D=60又BEAF, 1=40A=180- 1=140,F= 3=120故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得【详解】A、,此选项计算错误;B、,此选项计算正确;C、,此选项计算错误;D、23=6,此选项计算错误;故选:B【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键7A【分析】过点C作CFAB,则CFDE,利用平行线的性质和角的等量代换求解
9、即可【详解】解:由题意得,ABDE,过点C作CFAB,则CFDE,BCF+ABC180,BCF60,DCF20,CDEDCF20故选:A【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键8B【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.【详解】解:由,可得点A0坐标为(2,0)OA0=2,A2020A2021=故答案为:解析:B【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.【详解】解:由,可得点A0坐标为(2,0)OA0=2,A2020A2021=故答案为:B【点睛】本题考查了规律型中点的坐标以及含30角的直角三角形,利用
10、“在直角三角形中,30角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键二、填空题96【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛解析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键10【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:
11、(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴的对称点为,则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键11【分析】由角平分线的定义可得,FAD=BAE=26,而AFD与FAD互余,与BFE是对顶角,故可求得BFE的度数【详解】AE是角平分线,B
12、AE=26,FAD=B解析:【分析】由角平分线的定义可得,FAD=BAE=26,而AFD与FAD互余,与BFE是对顶角,故可求得BFE的度数【详解】AE是角平分线,BAE=26,FAD=BAE=26,DB是ABC的高,AFD=90FAD=9026=64,BFE=AFD=64.故答案为64.【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.1242【分析】利用平行线的性质,平角的性质解决问题即可【详解】解:4=90,1=48,3=90-1=42,ab,2=3=42,故答案为:42【点解析:42【分析】利用平行线的性质,平角的性质解决问题即可【详
13、解】解:4=90,1=48,3=90-1=42,ab,2=3=42,故答案为:42【点睛】本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型13111【分析】结合题意,根据轴对称和长方形的性质,得,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案【详解】根据题意,得, , 解析:111【分析】结合题意,根据轴对称和长方形的性质,得,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案【详解】根据题意,得, , 故答案为:111【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质
14、,从而完成求解143; 【分析】由可求出,由,可分别求出,继而可计算出结果【详解】解:(1)由题意可知:,则,(2)由题意可知:,则,故答案为:3;【点睛】本题主解析:3; 【分析】由可求出,由,可分别求出,继而可计算出结果【详解】解:(1)由题意可知:,则,(2)由题意可知:,则,故答案为:3;【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键15【分析】根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;【详解】、都有意义,第四象限的点到轴的距离为3,C点的坐标为,设直解析:【分析】根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解
15、析式即可得解;【详解】、都有意义,第四象限的点到轴的距离为3,C点的坐标为,设直线BC的解析式为,把,代入得:,解得:,故BC的解析式为,当时,故与轴的交点坐标为;故答案是【点睛】本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、坐标与图形的性质,准确计算是解题的关键16【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边解析:【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.
16、【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6A7A9=8,A5A7=6,A3A5=4A3A7= A5A7- A3A5=2A3A7= A7A9- A3A7=6又A3与原点重合A9的坐标为(6,0)故答案为:(6,0).【点睛】本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.三、解答题17(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式= =3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2
17、)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式= =3+1 =4故答案为(1)0;(2)4【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键18(1)x;(2)x【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解【详解】解:(1)4x2250,4x225,x2,x;(2)(2x1)364解析:(1)x;(2)x【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解【详解】解:(1)4x2250,4x225,x2,x;(2)(2x1)364,2x14,2x3,x【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根
18、的定义是解答本题的关键19垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到,再根据等量代换得出,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定【详解】解:ADBC,EFBC(已知),EFB90,ADB90(垂直的定义),EFBADB
19、(等量代换),EFAD(同位角相等,两直线平行),1BAD(两直线平行,同位角相等),又12(已知),2BAD(等量代换),DGBA(内错角相等,两直线平行),BAC+AGD180(两直线平行,同旁内角互补)故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【点睛】本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键20(1)作图见解析,;(2)7【分析】(1)直接利用P点平移变化规律得出A、B、C的坐标;直接利用得出各对应点位置进而得出答案;(2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出解析:(1)作图见解
20、析,;(2)7【分析】(1)直接利用P点平移变化规律得出A、B、C的坐标;直接利用得出各对应点位置进而得出答案;(2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案【详解】解:(1)P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位,如图所示,三角形ABC即为所求,(2)三角形ABC的面积为:451324357【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键21(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a,的整数部分为b,即可确定出ab的值;(3)根据题意确定出x与y的值,求出xy的相反数即可【
21、详解解析:(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a,的整数部分为b,即可确定出ab的值;(3)根据题意确定出x与y的值,求出xy的相反数即可【详解】(1),的整数部分为3,小数部分为;(2),的整数部分为2,小数部分为,的整数部分为3,;(3),的整数部分为1,小数部分为,10xy,其中x是整数,且0y1, ,的相反数是:【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题22(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径
22、及正方形的边长,进而可求得圆和正方形的解析:(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)小正方形的边长为1cm,小正方形的面积为1cm2,两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,设大正方形的边长为xcm, , 大正方形的边长为cm;(2)设圆的半径为r,由题意得,设正方形的边长为a,故答案为:;(3)解:
23、不能裁剪出,理由如下:正方形的面积为900cm2,正方形的边长为30cm长方形纸片的长和宽之比为,设长方形纸片的长为,宽为,则,整理得:,长方形纸片的长大于正方形的边长,不能裁出这样的长方形纸片【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查23(1)见解析;(2)见解析;(3)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3解析:(1)见解析;(2)见解析;(3)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然
24、后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3a,根据角平分线的定义可得ABD=C=2a,FBC=DBC=a+45,根据三角形内角和可得BFC+FBC+BCF=180,可得AFC=BCF的度数表达式,再根据平行的性质可得AFC+NCF=180,代入即可算出a的度数,进而完成解答【详解】(1)证明:,于,;(2)证明:过作,又,;(3)设DBE=a,则BFC=3a,BE平分ABD,ABD=C=2a,又ABBC,BF平分DBC,DBC=ABD+ABC=2a+90,即:FBC=DBC=a+45又BFC+FBC+BCF=180,即:3a+a+45+BCF=180BCF=135-4a,AFC=BCF=135-4a,又AM/CN,AFC+ NCF=180,即:AFC+BCN+BCF=180,135-4a+135-4a+2a=180,解得a=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100