ImageVerifierCode 换一换
格式:DOC , 页数:29 ,大小:622KB ,
资源ID:5163094      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5163094.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数字时钟设计—-毕业论文设计.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数字时钟设计—-毕业论文设计.doc

1、图书分类号:密 级:毕业设计(论文)数字时钟设计DESIGN OF DIGITALCLOCK 学生学号学生姓名学院名称信电工程学院专业名称电子信息工程指导教师2010年6月3日 9徐州工程学院毕业设计(论文)摘要设计简述数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用数字电子钟,从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。此次设计数字电子钟是为了了解数字电子钟的原理,从而学会制作数字电子钟。而且通过数字电子钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方

2、法。且由于数字电子钟电路包括组合逻辑电路和时序电路。通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。关键字 数字钟;组合逻辑电路;时序电路 26目 录1 绪论11.1 数字钟发展背景11.2 设计目的21.3 设计功能要求22 电路设计32.1 设计方案32.2 单元电路的设计32.2.1 主体电路部分32.2.1.1 振荡电路32.2.1.2 计数电路72.2.1.3 校时电路112.2.1.4 译码与显示电路132.2.2扩展功功能电路的设计142.2.2.1 定时控制电路142.2.2.2 仿广播电台正点报时电路162.2.2.3 自动报整点时数电路172.2.2.

3、4 触摸报整点时数电路183调试193.1主体电路部分193.2 扩展电路部分204总结22致谢23参考文献24附录25附录1 触发器25附录2 显示译码器25附录3 功能实现图26 1绪论1.1数字钟发展背景中国是世界上最早发明计时仪器的国家。有史料记载,汉武帝太初年间(纪元前104-101年)由落下闳创造了我国最早的表示天体运行的仪器浑天仪。东汉时期(公元130年)张衡创造了水运浑天仪,为世界上最早的以水为动力的观测天象的机械计时器,是世界机械天文钟的先驱。盛唐时代,公元725年张遂(又称一行)和梁令瓒等人创制了水运浑天铜仪,它不但能演示天球和日、月的运动,而且立了两个木人,按时击鼓,按时

4、打钟。第一个机械钟的灵魂擒纵器用于计时器,这是中国科学家对人类计时科学的伟大贡献。它比十四世纪欧洲出现的机械钟先行了六个世纪。第一只石英钟出现在二十世纪二十年代,从三十年代开始得到了推广,从六十年代开始,由于应用半导体技术,成功地解决了制造日用石英钟问题,石英电子技术在计时领域得到了广泛的应用。并取代机械钟做了更精确的时间标准。早在1880年,法国人皮埃尔居里和保罗雅克居里就发现了石英晶体有压电的特性,这是制造钟表“心脏”的良好材料。科学家以石英晶体制成的振荡计时器和电子钟组合制成了石英钟。经过测试,一只高精度的石英钟表,每年的误差仅为3-5秒。1942年,著名的英国格林尼治天文台也开始采用了

5、石英钟作为计时工具。在许多场合,它还经常被列为频率的基本标准,用于日常测量与检测。大约在 1970 年前后,石英钟表开始进入市场,风靡全球。随着科学的进步,精密的电子元件不断涌现,石英钟表也开始变得小巧精致,它既是实用品,也是装饰品。它为人们的生活提供方便,更为人们的生活增添了新的色彩。 在现行情况下根据简单实用强的、走时准确进行设计。而实验证明,钟表的振荡部分采用石英晶体作为时基信号源时,走时更精确、调整更方便。钟是一种计时的器具,它的出现开拓了时间计量的新里程。提起时钟大家都很熟悉,它是给我们指明时间的一种计时器,并且我们每天都要用到它。二十世纪八十年代中国的钟表业经历了一场翻天覆地的大转

6、折。其表现在三个方面:(1)从生产机械表转为石英电子表;(2)曾占据中国消费市场四十多年的大型国有企业突然被刚刚冒起的“组业”所取代,钟表生产中心转向中国南方沿海一带;(3)中国钟表业发展从以机芯为龙头改为以手表外观件为龙头。这场转折以迅雷不及掩耳的速度,冲击着传统的中国钟表工业。中国的钟表业从技术简单、零件少的石英钟机芯制造入手。最初石英钟机芯全靠从日本、德国进口,1989年开始完全自己生产,包括模具的制造加工。近十余年,逐渐提高机芯质量的稳定性,同时转向对手表机芯研制与开发。目前石英钟表机芯生产主要在福建省福州、广东东莞、番禺;机械钟表机芯在上海、山东等地。现在我国的电子业发展非常快速,电

7、子业的发展有利于钟表业的发展。在中国钟表发展史上,国产机芯研制的失败已经成为过去,“组装业”作为新兴钟表工业的起步阶段也已成为过去。一支新的充满智慧的钟表精英在成长。我们相信在科技高速发展的今天,钟表业运用当今材料工业、电子工业和其他领域的最新技术,一定会生产出代表中国科学水平的产品。我们希望钟表业的精英们在提高制造技术水平中不断创新,培育出拥有自主知识产权的品牌。这正是中国钟表业发展的希望。数字钟被广泛用于个人家庭,车站, 码头、办公室等公共场所,成为人们日常生活中的必需品。由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,运用超过老式钟表, 钟表的数字化给人们生产生活带来

8、了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。1.2设计目的设计一种多功能数字钟,该数字钟具有基本功能和扩展功能两部分。其中,基本功能部分的有准确计时,以数字形式显示时、分、秒的时间和校时功能。扩展功能部分则具有:定时控制、仿广播电台正点报时、自动报整点时数和触摸报正点的功能。数字钟的电路也是由主体电路和扩展电路两部分构成,在电路中,基本功能部分由主体电路实现,而扩展功能部电

9、路实现。这两部分都有一个共同特点就是它们都要用到振荡电路提供的1Hz脉冲信号。在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。并且要用数码管显示时、分、秒,各位均为两位显示,扩展部分要有相应的响应电路。分则由扩展1.3设计功能要求基本功能:(1)时的计时要求为“12翻1”,分和秒的计时要求为60进制(2)准确计时,以数字形式显示时,分,秒的时间(3)校正时间扩展功能:(1)定时控制;(2)仿广播电台报时功能;(3)自动报整点时数;2电路设计2.1设计方案根据设计要求首先建立了一个多功能 数字钟电路系统的组成框图,框图如图2-1所示。时显示器分显示器秒显示器

10、时译码器分译码器秒译码器时计数器分计数器秒计数器校时电路振荡器分频器整点报时触摸报时仿电台报定时控制主体电路 扩展电路图2-1 数字钟系统组成框图由图3-1可知,电路的工作原理是:多功能数字钟电路由主体电路和扩展电路两大部分组成。其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。振荡器产生的高脉冲信号作为数字钟的振源,再经分频器输出标准秒脉冲。秒计数器计满60后向分计数器个位进位,分计数器计满60后向小时计数器个位进位并且小时计数器按照“12翻1”的规律计数。计数器的输出经译码器送显示器。计时出现误差时电路进行校时、校分、校秒。扩展电路必须在主体电路正常运行的情况下才能进行扩展功

11、能。2.2单元电路的设计数字电子钟的设计方法很多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等。在本次设计,电路是由许多单元电路组成的,因此首先必须对各个单元电路进行设计。2.2.1 主体电路部分主体电路部分的电路主要由振荡电路、计数电路、显示电路以及校时电路四大部分组成。下面将对各部分电路进行设计。2.2.1.1 振荡电路振荡电路由振荡器和分频器产生 1Hz时钟脉冲和扩展部分所需的频率,下面对振荡器和分频器两部分进行介绍。(1)振荡器数字电路中的时钟是由振荡器产生的,振荡器是数字钟的核心。振荡器的

12、稳定度及频率的精度决定了数字钟计时的准确程度,一般来说,振荡器的频率越高,计时精度越高。它利用某种反馈方式产生时钟信号。对数字电路来说,振荡器的输出的幅度范围为0v5v的方波信号而不是锯齿波、三角波或其他形式。典型的振荡器是弛豫振荡器,它通过一个RC网络将反相器的输出反馈回来并存在一定的工作延迟时间。基本的电路如图2-2所示。图2-2 基本电路图在上述电路中,RI-C网络由第一个反相器驱动,具有RC特性曲线的响应信号被反馈给反相器的输入。当电容上的电压达到施密特触发器输入反相器的门限电压的时候,反相器的状态发生改变,并输出一个新的电压值。这个输出电压经过一定的延迟时间再次通过RIC反馈回来,直

13、到电容电压再次达到门限电压为止。用施密特触发器输入器件(如74HC04),但是由于电容的参考电压在每个临界点都要发生变化,所以施密特触发器不是必需的。由于电容与输出相连,每次状态改变时,电容的充电电压会超过5V。从这一点来说,输出电压会改变电容的充电电压,直到电容两端的电压变为74HC04的门限电压(2.5V)为止。振荡器输出状态的改变发生在电容上的电压达到2.5V时。弛豫振荡器对许多低成本而精度要求又不高的场所非常适合,但是并不推荐在任何有精度要求的实际应用电路采用它。如果想要获得高的精度,就应该在振荡电路中使用石英晶体作振源。在数字钟的设计与制作中应采用石英晶体振荡器,因为石英晶体具有压电

14、效应,是一个压电器件。当交流电压加在晶体两端,晶体先随电压变化产生对应的变化,然后机械振动又使晶体表面产生交变电荷。当晶体几何尺寸和结构一定时,它本生有一个固定的机械频率。当外加交流电压的频率等于晶体的固有频率时,晶体片的机械振动最大,晶体表面电荷量最多,外电路的交流电流最强,于是产生振荡,因此将石英晶体按一定方位切割成片,两边傅以电极,焊上引线,再用金属或玻璃外壳封装即构成石英晶体。石英晶体的固有频率十分稳定。另外石英晶体的振动具有多谐性,除了基频振动外,还有奇次谐次泛音振动,对于石英晶体,既可利用基频振动,也可利用泛音振动。前者称为基频晶体,后者称为泛音晶体,晶片厚度与振动频率成反比,工作

15、频率越高,要求晶片厚度越薄。将石英晶体作为高Q值谐振回路元件接入反馈电路中,就组成了晶体振荡器。在设计中所用的振荡器的电路图如图2-3所示。该电路能产生1MHz的方波脉冲振荡信号。图2-3 振荡器电路图(2)分频器分频器的作用是将由石英晶体产生的高频信号分频成基时钟脉冲信号和扩展部分所需的频率。在此电路中,分频器的功能主要有两个:一是产生标准脉冲信号;二是功能扩展电路所需的信号,如仿电台用的1KHz的高频信号和500Hz的低频信号等.在此电路中作为分频器的元件是:CD4518。CD4518可以组成二分频电路和十分频电路。用CD4518组成二分频的电路如图2-4;用CD4518组成十分频的电路如

16、图2-5;在本次设计中所用的分频器的电路图如图2-6。电路经过十分频后将晶振来的1MHz的振荡脉冲变为1Hz的脉冲信号,该信号作为计数器的计数脉冲使用。 Cr CPEN Cr CP输入 输入 输出 输入 输 出 清零 图2-4 二分频电路 图2-5 十分频电路图 2-6 分频器电路图 表2-1 CD4518的功能表 输入输出CKCREN上升沿LH加计数LL上升沿加计数下降沿LX保 持XL上升沿上升沿LLHL下降沿XLX全为L振荡器和分频器两部分构成振荡电路,它的电路图如图2-7所示。根据图2-7可知电路的工作原理是:石英晶体振荡器提供的频率为1MHz,CD4518组成十分频电路。并且一个 CD

17、4518可以组成两个十分频电路即:CD4518的引脚2与引脚6组成一个十分频电路而引脚10与引脚14组成另一个十分频电路。晶振的输出接入第一块CD4518的输入引脚2,经过一次十分频,频率变为100KHz。输出引脚6接入同一块CD4518的引脚10经第二次分频,频率变为10KHz。输出引脚接人第二块CD4518的输入引脚2再经一次分频,频率变为1KHz。这样经过六次分频最后可以得到1Hz的频率。图2-7 振荡电路图2.2.1.2 计数电路计数器是一种计算输入脉冲的时序逻辑网络,被计数的输入信号就是时序网络的时钟脉冲,它不仅可以计数而且还可以用来完成其他特定的逻辑功能,如测量、定时控制、数字运算

18、等等。数字钟的计数电路是用两个六十进制计数电路和“12翻1”计数电路实现的。数字钟的计数电路的设计可以用反馈清零法。当计数器正常计数时,反馈门不起作用,只有当进位脉冲到来时,反馈信号将计数电路清零,实现相应模的循环计数。以六十进制为例,当计数器从00,01,02,59计数时,反馈门不起作用,只有当第60个秒脉冲到来时,反馈信号随即将计数电路清零,实现模为60的循环计数。下面将分别介绍60进制计数器和“12翻1”小时计数器。 (一)60进制计数器电路如图2-8所示图2-8 计数器电路图电路中,74LS92作为十位计数器,在电路中采用六进制计数;74LS90作为个位计数器在电路中采用十进制计数。当

19、74LS90的14脚接振荡电路的输出脉冲1Hz时74LS90开始工作,它计时到10时向十位计数器74LS92进位。下面对电路中所用的主要元件及功能介绍。(1) 十进制计数器 74LS90 74LS90是二五十进制计数器,它有两个时钟输入端CKA和CKB。其中,CKA和组成一位二进制计数器;CKB和组成五进制计数器;若将与CKB相连接,时钟脉冲从输入,则构成了8421BCD码十进制计数器。74LS90有两个清零端R0(1)、R0(2),两个置9端R9(1)和R9(2),其BCD码十进制计数时序如表2-2,二五混合进制计数时序如表2-3,74LS90的管脚图如图2-9。R0(1)2R0(2)3R9

20、(1)6R9(2)7CKA14QA12CKB1QB9QC8QD1174LS90图2-9 74LS90的管脚图表2-2 BCD码十进制计数时序 表2-3二五混合进制计数时序CK00000100012001030011401005010160110701118100091001CK00000100012001030011401005100061001710108101191100 (2)异步计数器74LS92所谓异步计数器是指计数器内各触发器的时钟信号不是来自于同一外接输入时钟信号,因而触发器不是同时翻转。这种计数器的计数速度慢。一异步计数器 74LS92是 二六十二进制计数器,即CKA和组成二进

21、制计数器,CKB和在74LS92中为六进制计数器。当CKB和相连,时钟脉冲从CKA输入,74LS92构成十六进制计数器。74LS92的管脚图如图2-10。R0(1)6R0(2)7CKA14QA12CKB1QB11QC9QD874LS92图2-10 74LS92的管脚图(二) “12翻1”小时计数器电路 (1) 电路如图2-11 所 示CLK3D2SD4CD1Q5Q674LS74AP015P11P210P39Q03Q12Q26Q37RC13TC12CLK14CE4U/D5PL1174LS191456U9B74LS00123U9A74LS00111213U10D74LS00GNDR13.3K+5V

22、89U8D74LS04+5vCP图2-11 计数器电路图“12翻1”小时 计数器是按照“01020304050607080910111201”规律计数的,计数器的计数状态转换表如表2-4所示。表2-4“12翻1”小时计时时序十位 个位十位 个位CKQ10Q03 Q02 Q01 Q00CK Q10Q03 Q02 Q01 Q0001234567 000000000 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 1891011121300011101 0 0 01 0 0 11 0 1 00 0 0 00 0 0 10 0 1 00 0 0

23、 1(二)电路的工作原理由表可知:个位计数器由4位二进制同步可逆计数器 74LS191构成,十位计数器由双D触发器74LS74构成 ,将它们组成 “12翻1”小时计数器。由表可知:计数器的状态要发生 两次跳跃:一是:计数器计到9,即个位计数器的状态为 =1001后,在下一计数脉冲的作用下计数器进入暂态1010,利用暂态的两个1即使个位异步置0,同时向十位计数器进位使 =1;二是计数到12后,在第13个计数脉冲作用下个位计数器的状态应为 =0001,十位计数器的 =0。第二次跳跃的十位清“0”和个位置“1”的输出端、来产生。对电路中所用的主要元件及功能介绍。(1)D触发器74LS74在电路中用到

24、了D触发器74LS74,74LS74的管脚图如图2-12。D2Q5Q6CLK341PRECLRA74LS74图2-12 74LS74的管脚图下面将介绍一些有关触发器的内容:触发器,它是由门电路构成的逻辑电路,它的输出具有两个稳定的物理状态(高电平和低电平),所以它能记忆一位二进制代码。触发器是存放在二进制信息的最基本的单元。按其功能可为基本RS触发器触、JK触发器、D触发器和T触发器。这几种触发器都有集成电路产品。其中应用最广泛的当数JK触发器和D触发器。不过,深刻理解RS触发器对全面掌握触发器的工作方式或动作特点是至关重要的。事实上,JK触发器和D触发器是RS触发器的改进型,其中JK触发器保

25、留了两个数据输入端,而D触发器只保留了一个数据输入端。D触发器有边沿D触发器和高电平D触发器。74LS74为一个电平D触发器。(2) 计数器74LS191 74LS191的管脚图如图2-13 CTEN4D/U5CLK14LD11MAX/MIN12RCO13A15QA3B1QB2C10QC6D9QD774LS191 图2-13 74LS191的管脚图2.2.1.3 校时电路(一)电路如图2-14 所示8910U10C74LS00123U11A74LS00111213U10D74LS00R33.3kC10.01uFS1GND1011U8E74LS041HZS2/M2 Q2+5V图2-14 校时电路

26、图(二)电路的工作原理校时电路的作用是:当数字钟接通电源或者出现误差时,校正时间。校时是数字钟应具有的基本功能。一般电子表都具有时、分、秒等校时功能。为了使电路简单,在此设计中只进行分和小时的校时。校时有“快校时”和“慢校时”两种,“快校时”是通过开关控制,使计数器对1Hz校时脉冲计数。“慢校时”是用手动产生单脉冲作校时脉冲。图中S1校分用的控制开关,S2(总图)为校时用的控制开关,它们的控制功能如表4所示,校时脉冲采用分频器输出的1Hz脉冲,当S1或S2分别为“0”时可以进行“快校时”。如果校时脉冲由单次脉冲产生器提供,则可以进行“慢校时”。表2-5校时开关的功能 表2-5校时开关的功能S1

27、S2功能11计数10校分00校时(三)对电路中所用的主要元件及功能介绍在此电路中,用到的元器件有两块四2输入与非门74LS00 、一块六反相器74 LS04、两个电容、两个电阻以及两个开关。(1)四-2输入与非门74LS00集成逻辑门是数字电路中应用十分广泛最基本的一种器件,为了合理的使用和充分利用其性能,必须对它的主要参数和逻辑功能进行测试。74LS00与非门的主要参数为:输出高电平:指与非门有一个以上输入端接地或接低电平时的输出电平值。输出低电平:指与非门的所有输入端均接高电平时的输出电平值。开门电平:指与非门输出处于额定低电平时允许输入高电平的最小值。关门电平:指与非门输出处于高电平状态

28、时允许输入低电平的最大值。电压传输特性:是指门的输出电压随输入电压而变化的曲线,由它可以得到门电路的输出高电平、输出低电平、关门电平和开门电平等。低电平的输出电源电流;是指输入所有端都悬空,输出端空载时,电源提供器件的电流。高电平输出电源电流:是指输出端空载,每个门各有一个以上的输入端接地,电源提供给器件的电流。低电平输入电流:是指被测输入端接地,其余输入端悬空时,由被测输入端流出的电流值。高电平输入电流:指被测输入端接高电平,其余输入端接地,流入被测输入端的电流值。扇出系数:门电路能驱动同类门的个数,它是衡量门电路负载能力的一个参数,TTL与非门有两种不同性质的负载,即灌电流负载和拉电流负载

29、,因此有两种扇出系数。即低电平扇出系数和高电平扇出系数。2.2.1.4 译码与显示电路(一)电路如图2-15所示BI/RBO4RBI5LT3A7B1C2D6a13b12c11d10e9f15g1474LS48abfcgdeDPYLEDgn1234567abcdefgDPY_7-SEG图2-15 译码和显示电路(二)电路的工作原理译码是编码的相反过程,译码器是将输入的二进制代码翻译成相应的输出信号以表示编码时所赋予原意的电路。常用的集成译码器有二进制译码器、二十制译码器和BCD7段译码器、显示模块用来显示计时模块输出的结果。(三)对电路中的主要元件及功能介绍(1)译码器74LS48译码器是一个多

30、输入、多输出的组合逻辑电路。它的工作是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数字分配,存储器寻址和组合控制信号等。译码器可以分为通用译码器和显示译码器两大类。在电路中用的译码器是共阴极译码器74LS48,用74LS48把输入的8421BCD码ABCD译成七段输出a-g,再由七段数码管显示相应的数。 74LS48的管脚图如图2-16。在管脚图中,管脚LT、RBI、BI/RBO都是低电平是起作用,作用分别为:LT为灯测检查,用LT可检查七段显示器个字段是否能正常被点燃。BI是灭灯输入,可

31、以使显示灯熄灭。RBI是灭零输入,可以按照需要将显示的零予以熄灭。BI/RBO是共用输出端,RBO称为灭零输出端,可以配合灭零输出端RBI,在多位十进制数表示时,把多余零位熄灭掉,以提高视图的清晰度。也可用共阴译码器74LS248,CD4511。BI/RBO4RBI5LT3A7B1C2D6a13b12c11d10e9f15g1474LS48图2-16 74LS48的管脚图(2)显示器SM421050N在此电路图中所用的显示器是共阴极形式,阴极必须接地。SM421050N的管脚功能图如图2-17abfcgdeDPYLEDgn1234567abcdefgDPY_7-SEG图2-17 SM42105

32、0N的管脚功能图主体电路部分是由上面的以上的各个单元电路组成的。2.2.2扩展功功能电路的设计2.2.2.1定时控制电路数字钟在指定的时刻发出信号,或驱动音响电路“闹时”;或对某装置的电源进行接通或断开“控制”。不管是闹时还是控制,都要求时间准确,即信号的开始时刻与持续时间必须满足规定的要求。(一)设计电路如图2-18所示图2-18 定时控制电路图(二)电路的工作原理在这里将举例来说明它的工作原理。要求上午7时59分发出闹时信号,持续1分钟。设计如下:7时59分对应数字钟的时时个位计数器的状态为,分十位计数器的状态为,分个位计数器的状态为,若将上述计数器输出为“1”的所有输出端经过与门电路去控

33、制音响电路,就可以使音响电路正好在7点59分响,持续1分钟后(即8点)停响。所以闹时控制信号Z的表达式为式中,M为上午的信号输出,要求M=1。如果用与非门实现的逻辑表达式为:在该电路图中用到了4输入二与非门74LS20,集电极开路的2输入四与非门74LS03,因OC门的输出端可以进行“线与”,使用时在它们的输出端与电源+5V端之间应接一电阻RL。RL的值由下式决定: =0.4V,=0.4mA,=2.4V,=50uA,=8mA,=100Ua;m为负载门输入端总个数。取RL=3.3K。如果控制1KHz高音和驱动音响电路的两极与非门也采用OC门,则RL的值应该重新计算。由电路图可以看见,上午7点59

34、分,音响电路的晶体管导通,则扬声器发出1KHz的声音。持续1分钟到8点整晶体管因为输入端为“0”而截止,电路停闹。(三)对电路中所用的主要元件及功能介绍在电路中所用到的元件有74LS03,74LS20等。(1)四2输入与非门74LS03,只要输入变量有一个为0则输出为1,只有输入全为1,输出才为0.74LS03的管脚图如图2-19 A123&74LS03图2-19 74LS03的管脚图(2)二4输入与非门74LS20,四个输入端有一个为0,则输出为1,只有全部输入为1,输出才为0.74LS20的管脚图如图2-20所示。12456&A74LS20图2-20 74LS20的管脚图2.2.2.2 仿

35、广播电台正点报时电路(一)功能要求仿广播电台正点报时的功能要求是:每当数字钟计时快要到正点时,通常按照4低音1高音的顺序发出间断声响,以最后一声高音结束的时刻为正点时刻。(二)该电路的工作原理电路图的工作原理举例来说明;例如设4声低音(约500Hz)分别 在59分51秒、53秒、55秒及57秒,最后一声高音(约1000Hz)发生在59秒,它们的持续时间为1秒。只有当分十进位的,分个位的,秒十位的及秒个位的时,音响电路才能工作。(三)对该电路中使用的元件的介绍因为在该电路中所用的元件主要是74LS00、74LS04及74LS20这些元件在前面的电路中已经介绍.这里就不再介绍它了2.2.2.3 自

36、动报整点时数电路(一)电路的工作原理报整点时数电路的功能是:每当数字钟计时到整点时发出音响,并且几点响几声。实现这一功能的电路主要有以下几个部分。减法计数器:完成几点响几声的功能。即从小时计数器的整点开始进行减法计数,直到零为止。编码器:将小时计数器的5个输出端、按照“12翻1”的编码要求转换为减法计数器的4个输入端、所需要的BCD码。在电路图中编码器是由与非门实现的组合逻辑电路。其中编码器是由与非门实现的组合逻辑电路,其输出端的逻辑表达式由5变量的卡若图可得。 表2-6 编码器真值表分进位脉冲 小时计数器输出 减法计数器输入CK 1 0 0 0 0 1 0 0 0 12 0 0 0 1 0

37、0 0 1 03 0 0 0 1 1 0 0 1 14 0 0 1 0 0 0 1 0 05 0 0 1 0 1 0 1 0 16 0 0 1 1 0 0 1 1 07 0 0 1 1 1 0 1 1 18 0 1 0 0 0 1 0 0 09 0 1 0 0 1 1 0 0 110 1 0 0 0 0 1 0 1 011 1 0 0 0 1 1 0 1 112 1 0 0 1 0 1 1 0 0 逻辑控制电路 控制减法计数器的清“0”与置数,控制音响电路的输入信号。减法计数器选用74LS191,74LS191各控制端的作用如下。LD为置数端。当LD=0时将小时计数器的输出经数据输入端的数据置

38、入,RC为溢出负脉冲输出端.当减法计数到“0”时,RC输出一个负脉冲。U/D为加/减控制器。U/D=1时减法计数。CKA为减法计数脉冲,兼作音响电路的控制脉冲。逻辑控制电路由D触发器74LS74与多级与非门组成。其工作原理是:接通电源后按触发开关S,使D触发器74LS74清0,即1Q=0。该清“0”脉冲有两个作用:一是,使74LS191的置数端LD=0,即将此对应的小时计数器输出的整点时数置入74LS191;二是,封锁1KHz的音频信号,使音响电路无脉冲输入。当分十位计数器的进位脉冲下降沿到来时,经过G1反相,小时计数器加1。新的小时数置于74LS191,分十位计数器的进位脉冲的下降沿到来时又

39、使74LS74的状态翻转,1Q经G3、G4延时后,74LS191进行减法计数,计数脉冲由CK0提供。CK0=1时音响电路发出1KHz声音,当CK0=0时停响。当减法计数到0时,使D触发器的1CK=0,但是触发器的状态不改变。因为分十位计数器的进位脉冲仍为0,CK=1,使D触发器翻转复“0”,74LS191又回到置数状态,直到下一个分十位计数器进位脉冲的下降沿来到。实现自动报警的功能。如果出现某些整点数不准确,其主要原因是逻辑控制电路的与非门延时时间不够,产生了竞争冒险的现象,可以适当增加与非门的级数或接如小电容进行滤波。2.2.2.4 触摸报整点时数电路设计本功能基于在有些场合(如夜间),不便

40、于直接看显示时间,希望数字钟有触摸报整点时数的功能.即触摸数字钟的某端,就能报时.在功能三的基础上,增加一触发脉冲控制电路,或者将功能三的电路的自动报时改为触摸报时电路即可.产生触摸脉冲的电路有单次脉冲产生器,555集成电路定时器,单稳态触发器等 .我采用的是555集成电路产生的触摸脉冲.触摸控制电路如图2-23CZ110uFCZ30.01uFCZ20.01uFRZ2333RZ1100KTRIG2Q3R4CVolt5THR6DIS7VCC8GND1UZ14555SZ2SW+5VDZ1LED图2-23 触摸控制电路图SZ2为一金属片,它还要和74LS74的RD(1)端连接,当用手触摸金属片时,即加入一负脉冲,其有两个作用:一、经过555产生一正脉冲;二、使D触发器输出为0,从而使小时计数器的输出的整数点置入74LS191。555输出经过偶数次反向器延时后家到小时计数器的CK端,从而使74LS191开始减数。3调试在本设计中,为了设计的顺利进行,我在实验箱上进行了部分调试,因为电路太复杂,在实验箱上不可能整体电路进行调试。调试后,我就自己焊接了一个试验板进行调试。以确保最后能很好的完成其各部分功能。调试后,我就画

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服