1、重点高中提前招生模拟考试数学试卷学校:_姓名:_班级:_考号:_注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上一.选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.)1.16的平方根是( )A.4B.4 C.4 D.8 2.下列运算正确的是( ) A B C D. 3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ) A.1个 B.2个 C.3个 D.4个4.如图,桌面上有一个一次性纸杯,它的俯视图应是( )A B C D5.某学习小组为了解本城市500万成年人中
2、大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( ) A.该调查的方式是普查 B.本地区只有40个成年人不吸烟 C.样本容量是50 D.本城市一定有100万人吸烟6 杭州银泰百货对上周女装的销售情况进行了统计,如下表所示: 颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( )A平均数B众数C中位数D方差7.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ) A. 内切 B.相交 C.外切 D.外离8.在ABC中,D、E分别是边AB、A
3、C的中点,若BC5,则DE的长是( )ABOyx12ykxb A.2.5 B.5 C.10 D.159.如右图,一次函数ykxb的图象经过A、B两点, 则不等式kxb 0的解集是( ) A.x 0 B. 0 x C.x D. x 10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( ) A.12120元 B.12140元 C.12160元 D.12200元11.若,且2,则( )A.有最小值 B.有最大值1C.有最大值2 D.有最小值12.在矩形ABCD中,有一个菱形BFDE(点
4、E,F分别在线段AB,CD上),记它们的面积分别为和,现给出下列命题:若,则; 若,则DF=2AD.则( )A. 是真命题,是真命题 B. 是真命题,是假命题C. 是假命题,是真命题 D. 是假命题,是假命题二.填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题卡相应位置上.)13.函数中,自变量x的取值范围是 .14.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,则产量较为稳定的品种是_(填“甲”或“乙”).15.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两
5、次日照的光线互相垂直,则树的高度约为_m.第17题下午5时早上10时第15题 16.已知圆锥的底面半径为1cm,母线长为1cm,则它的侧面积是 cm2.17.如图,在平面直角坐标系中,与轴相切于原点,平行于轴的直线交于M、两点,若点的坐标是,则弦M的长为 .P1OA1A2A3P3P2yx(第18题)18.如图,已知OP1A1、A1P2A2、A2P3A3均为等腰直角三角形,直角顶点P1、P2 、P3在函数(x0)图象上,点A1、A2、A3在x轴的正半轴上,则点P2011的横坐标为 .三.解答题(本大题共10小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.
6、(本题满分16分) (1)计算: (2)化简20.(本小题满分12分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2;B布袋中有三个完全相同的小球,分别标有数字,和4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=上的概率.21.(本题满分12分)如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是DCA30和DCB60,如果斑马线的宽度是AB3米,驾驶员与车
7、头的距离是0.8米,这时汽车车头与斑马线的距离x是多少? 22.(本题满分12分)已知:如图,AB是O的直径,C、D为O上两点,CFAB于点F,CEAD的延长线于点E,且 CECF. (1)求证:CE是O的切线; (2)若ADCD6,求四边形ABCD的面积.A BO F E D CA BO F E D C23.(本题满分12分)已知在图1、2、3中AC均平分MAN. AMNBDCCABBNNMMDDAC第23题图1第23题图2第23题图3 在图1中,若MAN=120,ABC=ADC=90,我们可得结论:AB+AD=AC;在图2中,若MAN=120,ABC+ADC=180,则上面的结论是否仍然成
8、立?若成立,请给出证明;若不成立,请说明理由;(2) 在图3中:(只要填空,不需要证明). 若MAN=60,ABC+ADC=180,则AB+AD= AC; 若MAN=(0180),ABC+ADC=180,则AB+AD= AC(用含的三角函数表示).24.(本题满分12分)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划
9、时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计.(1)汽车载人时的速度为_km/min;第一批学生到达博物馆用了_分钟;原计划从学校出发到达博物馆的时间是_分钟;(2)求汽车在回头接第二批学生途中(即空载时)的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.25.(本题满分14分)如图,
10、RtAOB中,A90,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA2,AB8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点. (1)填空:直线OC的解析式为 _ ; 抛物线的解析式为 _ ; (2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E; 是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由; 设BOE的面积为S,求S的取值范围.BOACxyBOACxy数学参考答案及评分意见一选择题:123456789101112CBCBCBBADCCA二填空题(
11、本大题共6小题,每小题4分,共计24分.)13.x-2 14.甲15.4 16. 17.3 18.三.解答题:19.(本题满分16分) (1)21826分=78分(2) 5分 8分 20.(本小题满分12分)(1) 6分 或BA-2-3-41(1,-2)(1,-3)(1,-4) 2(2,-2)(2,-3)(2,-4)6分(2)落在直线y=上的点Q有:(1,-3);(2,-4) P= 12分21.解:如图,CDAB,CAB=30,CBF=60; 2分BCA=60-30=30,即BAC=BCA; 4分BC=AB=3米; 6分RtBCF中,CBF=3米,CBF=60; 8分BF= BC=1.5米;
12、10分故x=BF-EF=0.7米. 12分22.(1)连结OC.CFAB ,CEAD,且CE=CFCAE=CAB OC=OA CABOCACAEOCA OCAECACAEECA904分 又OC是O的半径 CE是O的切线6分(2)AD=CDDAC=DCA=CABDC/ABCAEOCAOC/AD四边形AOCD是平行四边形OC=AD=6,AB12重点高中提前招生模拟考试数学试卷学校:_姓名:_班级:_考号:_注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上一.选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答
13、题卡上相应的选项标号涂黑.)1.16的平方根是( )A.4B.4 C.4 D.8 2.下列运算正确的是( ) A B C D. 3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ) A.1个 B.2个 C.3个 D.4个4.如图,桌面上有一个一次性纸杯,它的俯视图应是( )A B C D5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( ) A.该调查的方式是普查 B.本地区只有40个成年人不吸烟 C.样本容量是50 D.本城市一定有100万人吸烟6 杭州银泰百货对上周女装
14、的销售情况进行了统计,如下表所示: 颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( )A平均数B众数C中位数D方差7.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ) A. 内切 B.相交 C.外切 D.外离8.在ABC中,D、E分别是边AB、AC的中点,若BC5,则DE的长是( )ABOyx12ykxb A.2.5 B.5 C.10 D.159.如右图,一次函数ykxb的图象经过A、B两点, 则不等式kxb 0的解集是( ) A.x 0 B. 0 x C.x D. x 10.某剧场为希望工程义演的
15、文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( ) A.12120元 B.12140元 C.12160元 D.12200元11.若,且2,则( )A.有最小值 B.有最大值1C.有最大值2 D.有最小值12.在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为和,现给出下列命题:若,则; 若,则DF=2AD.则( )A. 是真命题,是真命题 B. 是真命题,是假命题C. 是假命题,是真命题 D. 是假命题,是假命题二.填空题(本大题共6小题,每小题4分,共计24分
16、.请把答案直接填写在答题卡相应位置上.)13.函数中,自变量x的取值范围是 .14.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,则产量较为稳定的品种是_(填“甲”或“乙”).15.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度约为_m.第17题下午5时早上10时第15题 16.已知圆锥的底面半径为1cm,母线长为1cm,则它的侧面积是 cm2.17.如图,在平面直角坐标系中,与轴相切于原点,平行于轴的直线交于M、两点,若点的坐标是,则弦M的长为 .
17、P1OA1A2A3P3P2yx(第18题)18.如图,已知OP1A1、A1P2A2、A2P3A3均为等腰直角三角形,直角顶点P1、P2 、P3在函数(x0)图象上,点A1、A2、A3在x轴的正半轴上,则点P2011的横坐标为 .三.解答题(本大题共10小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分16分) (1)计算: (2)化简20.(本小题满分12分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2;B布袋中有三个完全相同的小球,分别标有数字,和4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随
18、机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=上的概率.21.(本题满分12分)如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是DCA30和DCB60,如果斑马线的宽度是AB3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少? 22.(本题满分12分)已知:如图,AB是O的直径,C、D为O上两点,CFAB于点F,CEAD的延长线于点E,且 CECF. (1)求证:CE是O的切线; (2)若ADCD6,求四边形ABCD的面积.
19、A BO F E D CA BO F E D C23.(本题满分12分)已知在图1、2、3中AC均平分MAN. AMNBDCCABBNNMMDDAC第23题图1第23题图2第23题图3 在图1中,若MAN=120,ABC=ADC=90,我们可得结论:AB+AD=AC;在图2中,若MAN=120,ABC+ADC=180,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 在图3中:(只要填空,不需要证明). 若MAN=60,ABC+ADC=180,则AB+AD= AC; 若MAN=(0180),ABC+ADC=180,则AB+AD= AC(用含的三角函数表示).24.(本
20、题满分12分)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计.(1)汽车载人时的速度为_km/min;第一批学生到达博物馆用了_分钟;原计划从学校出发到达博物
21、馆的时间是_分钟;(2)求汽车在回头接第二批学生途中(即空载时)的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.25.(本题满分14分)如图,RtAOB中,A90,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA2,AB8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点. (1)填空:直线OC的解析式为 _ ; 抛物线的解析式为 _ ; (2)现将该抛物线沿着线段OC移动,使其顶点M
22、始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E; 是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由; 设BOE的面积为S,求S的取值范围.BOACxyBOACxy数学参考答案及评分意见一选择题:123456789101112CBCBCBBADCCA二填空题(本大题共6小题,每小题4分,共计24分.)13.x-2 14.甲15.4 16. 17.3 18.三.解答题:19.(本题满分16分) (1)21826分=78分(2) 5分 8分 20.(本小题满分12分)(1) 6分 或BA-2-3-41(1,-2)(1
23、,-3)(1,-4) 2(2,-2)(2,-3)(2,-4)6分(2)落在直线y=上的点Q有:(1,-3);(2,-4) P= 12分21.解:如图,CDAB,CAB=30,CBF=60; 2分BCA=60-30=30,即BAC=BCA; 4分BC=AB=3米; 6分RtBCF中,CBF=3米,CBF=60; 8分BF= BC=1.5米; 10分故x=BF-EF=0.7米. 12分22.(1)连结OC.CFAB ,CEAD,且CE=CFCAE=CAB OC=OA CABOCACAEOCA OCAECACAEECA904分 又OC是O的半径 CE是O的切线6分(2)AD=CDDAC=DCA=CA
24、BDC/ABCAEOCAOC/AD四边形AOCD是平行四边形OC=AD=6,AB12重点高中提前招生模拟考试数学试卷学校:_姓名:_班级:_考号:_注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上一.选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.)1.16的平方根是( )A.4B.4 C.4 D.8 2.下列运算正确的是( ) A B C D. 3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ) A.1个 B.2个 C.3个 D.4个4.如图,桌面上有一个一次
25、性纸杯,它的俯视图应是( )A B C D5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( ) A.该调查的方式是普查 B.本地区只有40个成年人不吸烟 C.样本容量是50 D.本城市一定有100万人吸烟6 杭州银泰百货对上周女装的销售情况进行了统计,如下表所示: 颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( )A平均数B众数C中位数D方差7.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是(
26、 ) A. 内切 B.相交 C.外切 D.外离8.在ABC中,D、E分别是边AB、AC的中点,若BC5,则DE的长是( )ABOyx12ykxb A.2.5 B.5 C.10 D.159.如右图,一次函数ykxb的图象经过A、B两点, 则不等式kxb 0的解集是( ) A.x 0 B. 0 x C.x D. x 10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( ) A.12120元 B.12140元 C.12160元 D.12200元11.若,且2,则( )A.有最小值 B.
27、有最大值1C.有最大值2 D.有最小值12.在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为和,现给出下列命题:若,则; 若,则DF=2AD.则( )A. 是真命题,是真命题 B. 是真命题,是假命题C. 是假命题,是真命题 D. 是假命题,是假命题二.填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题卡相应位置上.)13.函数中,自变量x的取值范围是 .14.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,则产量较为稳定的品种是_(填“甲”或“乙”).15
28、.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度约为_m.第17题下午5时早上10时第15题 16.已知圆锥的底面半径为1cm,母线长为1cm,则它的侧面积是 cm2.17.如图,在平面直角坐标系中,与轴相切于原点,平行于轴的直线交于M、两点,若点的坐标是,则弦M的长为 .P1OA1A2A3P3P2yx(第18题)18.如图,已知OP1A1、A1P2A2、A2P3A3均为等腰直角三角形,直角顶点P1、P2 、P3在函数(x0)图象上,点A1、A2、A3在x轴的正半轴上,则点P2011的横坐标为 .三.解答题(本大题共10小题,
29、共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分16分) (1)计算: (2)化简20.(本小题满分12分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2;B布袋中有三个完全相同的小球,分别标有数字,和4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=上的概率.21.(本题满分12分)如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马
30、线前后两端的视角分别是DCA30和DCB60,如果斑马线的宽度是AB3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少? 22.(本题满分12分)已知:如图,AB是O的直径,C、D为O上两点,CFAB于点F,CEAD的延长线于点E,且 CECF. (1)求证:CE是O的切线; (2)若ADCD6,求四边形ABCD的面积.A BO F E D CA BO F E D C23.(本题满分12分)已知在图1、2、3中AC均平分MAN. AMNBDCCABBNNMMDDAC第23题图1第23题图2第23题图3 在图1中,若MAN=120,ABC=ADC=90,我们可得结论:AB+A
31、D=AC;在图2中,若MAN=120,ABC+ADC=180,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(4) 在图3中:(只要填空,不需要证明). 若MAN=60,ABC+ADC=180,则AB+AD= AC; 若MAN=(0180),ABC+ADC=180,则AB+AD= AC(用含的三角函数表示).24.(本题满分12分)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停
32、下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计.(1)汽车载人时的速度为_km/min;第一批学生到达博物馆用了_分钟;原计划从学校出发到达博物馆的时间是_分钟;(2)求汽车在回头接第二批学生途中(即空载时)的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请
33、简要说出方案,并通过计算说明;如果不能,简要说明理由.25.(本题满分14分)如图,RtAOB中,A90,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA2,AB8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点. (1)填空:直线OC的解析式为 _ ; 抛物线的解析式为 _ ; (2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E; 是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由; 设BOE的面积为S,求S的取值范围.BOACxyBOACxy数学参考答案及评分意见一选择题:123456789101112CBCBCBBADCCA二填空题(本大题共6小题,每小题4分,共计24分.)13.x-2 14.甲15.4 16. 17.3 18.三.解答题:19.(本题满分16分) (1)21826分=78分(2)
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100