ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:764.50KB ,
资源ID:5125957      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5125957.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(行列式的计算技巧——数学与应用数学毕业设计论文.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

行列式的计算技巧——数学与应用数学毕业设计论文.doc

1、2016届本科毕业论文行列式的计算方法姓 名:_ * _院 别:_数学与信息科学学院_专 业:_数学与应用数学_学 号:_ 0000000000_ 指导教师:_ _ * _ _ 2016年 5月 1日 2016届本科生毕业论文目录摘 要1关键词1Abstract1Key words10 引言21 基本理论22 行列式的计算技巧42.1 化三角形法42.2 递推法72.3降阶法82.4数学归纳法92.5 范德蒙德行列式法102.6 拉普拉斯定理法132.7 拆行(列)法152.8 构造法16参考文献17致 谢17I 2016届本科生毕业论文行列式的计算方法摘 要行列式是代数学重要研究工具,并且在

2、物理,经济,金融等各学科当中都着有广泛的应用.本文针对行列式的特点,利用行列式的性质,主要讨论了行列式的计算方法,例如:三角形行列式法,递推法,降阶法,范德蒙德行列式法等,并且根据每一种计算方法的特点,通过典型的例题进行论述.关键词行列式;计算技巧;范德蒙行列式;上三角形The determinant calculation techniquesAbstractDeterminant is an important tool in algebra research, which has a wide range of applications in physics, economic, fin

3、ancial and so on. This paper according to the character and quality of determinant, discuss the calculation method to determinant, for instance: the triangle method, the recursion method, the order reduction method, Vandermonde determinant method ect, basis on the character of every calculation meth

4、od, discuss things through typical examples.Key wordsThe determinant; Computing skills; Vandermonde determinant; The triangle0 引言行列式描述的是在维空间中,一个线性变换形成的平行多面体的体积,被广泛应用于解线性方程组,计算微积分,矩阵运算等.行列式最初是伴随着方程组的求解发展起来的.发展至今,行列式已成为代数学中的重要内容,在数学理论上有着十分重要的地位.行列式的概念最早是在十七世纪日本数学家关孝和在一部叫做解伏题之法的著作中提出来的.十八世纪法国数学家范德蒙德首先把

5、行列式作为专门理论独立于线性方程组之外进行研究.而十九世纪,是行列式理论形成和发展的重要时期.1815年,柯西在他的一篇论文当中给出了关于行列式的第一个系统的、并且几乎是近代的处理.当中主要结果之一则是是行列式的乘法定理.除此之外,他还是把行列式的元素排成方阵的第一人,并且采用双足标记法.他不仅引进了行列式特征方程的专业术语;还给出了相似行列式概念.本文主要讨论行列式解题方法和解题思路.本文重点讨论了8种较为典型的计算行列式的解题技巧,并在给每一种计算技巧都提供了典型的例题,帮助理解相对应的技巧方法.本文分成两个部分,第一部分重点叙述了行列式的定义,基本性质以及矩阵的定义.第二部分论述了计算行

6、列式的方法以及应用. 以便可以更有针对性的根据行列式的特点选择出比较便捷的计算方法,从而更快的计算出行列式,并且在物理,经济,金融等各学科当中能够取得更有效的学习.1 基本理论1.1定义1 级行列式等于所有取自不同行不同列的个元素的乘积 (1)的代数和,这里是的一个排列,每一项(1)都按下列规则带有符号: 当是偶排列时,(1) 符号为正;当是奇排列时,(1)带有负号.此定义又可写成这里表示对所有级排列求和.1.2 级行列式的基本性质性质1 行列互换,行列式不变. .性质2 行列式中任意两个行或列互换,行列式值改变符号.性质3 某个数乘以行列式的某一行或者某一列,则可以将该数提取到行列式外.性质

7、4 如果某一行(列)是两组数相加的和,那么此行列式就等于两个行列式的和,而这两个行列式除去这一行(列)之外,剩下的元素全部对应相同.性质5 如果行列式中有两行或者两列的对应元素相同,则此行列式的值为零.性质6 如果在行列式中任意两行(列)对应成比例,则此行列式的值为零.性质7 把一行(列)的倍数加到另一行(列),则此行列式值符号相反.2 行列式的计算技巧行列式是线性代数中的一个重要研究对象,并且是线性代数中最基本,最常用的工具,因此研究行列式计算技巧实是为了更好的去了解行列式计算过程中的一些方法,为更快更好更方便的解答行列式的计算提供方法.2.1 化三角形法定义2 由个数排列成的行列的表称为一

8、个矩阵.定义3 数域上矩阵的初等行(列)变换是指以下三种变换:,(2) 交换矩阵的两行(列);(3) 以一个数乘矩阵某一行(列)的所有元素;(4) 把矩阵的某一行(列)所有元素的倍加到另一行(列)对应的元素上去;矩阵的初等行变换和初等列变换统称为矩阵的初等变换.定义4 数域上主对角线以下或以上的全体元素都是零的阶方阵,称为三角矩阵.定义5 主对角线以外的元素全为零的行列式称为对角行行列式.且对角线以下(上)的元素全为零的行列式叫做上(下)三角形行列式.命题1 上三角形行列式等于主对角线上元素的乘积,即证明 我们首先观察形如(1)式的项有哪一些不为零,然后再来决定他们的符号.项的一般形式为,在行

9、列式中第行的元素除去以外全为零,因之,只要考虑的那些项.在第行中,除去外,其余的项全为零. 因之这两个可能.由于,所以就不能等于了,从而.这样逐步推上去,不难看出,在展开式中,除去这一项外,其余项全是0.而这一项的列指标所成的排列是一个偶排列,所以这一项带正号.结论得证.如果把一个行列式经过适当变换之后化为三角形,那么其结果即为行列式主对角线上元素的乘积.化三角形法是把原行列式化成上(下)三角形行列式或者对角形行列式计算的方法.一般来说,每个行列式都可以利用行列式的性质转化为三角形行列式.但是对于阶数高的行列式,在通常情况下,计算往往会比较繁琐.因此,在许多的情况下,总是首先利用行列式的性质将

10、原行列式作为某种保值变形,然后再将其化为三角形行列式. 任意一个阶方阵总可以经过行列初等变换化成上(下)三角形矩阵(证明见高等代数).从而把行列式写成上(下)三角形行列式与一个数乘积的形式,其步骤如下:如果行列式的第一行第一个元素为零,首先可将第一行(列)与其他任一行(列)进行交换,使得第一行第一个元素化为不为零,然后把第一行的合适的倍数加到其他各行,使得第一列除了第一个元素之外其他元素全部为零,然后再用相同的方法处理除去第一行第一列余下的低阶行列式,依次化下去,直至化为上三角形行列式,此时行列式的值就等于主对角线上所有元素的乘积. 例1 计算下列行列式. 解 例2计算行列式.解2.2 递推法

11、定义5 利用行列式性质,把一个n阶行列式表示成具有相同的结较低阶行列式的现行关系式,这种关系式被称为递推关系式.递推法是根据行列式构造特点,建立与(或者)递推关系式,逐步推导下去,求出的值.也可以找到与,的递推关系,然后利用,求出的值.若阶行列式满足关系式.则作特征方程.(5)若,则特征方程有两个不等根,则.(6)若,则特征方程有重根,则在(5),(6)中,均为待定系数,可令求出.例3 计算行列式.解 按第一行展开,得由此递推,得出. (7)因为中与对称,则有. (8)当,由(7),(8)得.当,2.3 降阶法定义6 在行列式中划去元素所在的第行与列,剩下的个元素按原来的排法构成一个级的行列式

12、称为的余子式,记为.而称为的代数余子式.推论1 设为阶行列式,则.或.其中为中的元素的代数余子式.降阶法亦称为按行(列)展开法.即按照某一行(列)展开行列式,即可以使得行列式降一阶.依次进行下去,直至化为二阶或者三阶行列式,可直接计算结果.如果行列式中的零元素比较多,我们则可以按照某一行(列)展开计算.若是行列式比较复杂,为使得计算比较简单,我们可以根据行列式的特点,首先利用行列式的性质将行列式进行化简,使得行列式中有较多的零元素出现,然后再展开.例4 计算下列行列式.解 .2.4数学归纳法定义7 当一个命题满足下面两个步骤 证明当取第一个值时命题成立; 假设时命题成立,证明时命题也成立.我们

13、就可以断定这个命题对于从开始所有的正整数都成立.这种证明方法叫做数学归纳法.数学归纳法是一种数学证明方法,典型地用于确定一个表达式在 所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的.最简单和常见的数学归纳法证明方法是证明当属于所有自然数时一个表达式成,这种方法是由下面两步组成 递推的基础:证明当时表达式成立. 递推的依据:证明如果当时成立,那么当时同样成立. (递推的依据中的“如果”被定义为归纳假设.不要把整个第二步称为归纳假设).当与为同型的行列式,我们一般考虑用数学归纳法求解.一般是先利用不完全归纳法找出行列式的猜想值,然后再利用数学归纳法证明猜想.因此,数学归纳

14、法我们一般可以用来证明行列式等式.因为给定了一个行列式,我们要猜想行列式的值是不容易的,所以是先给定行列式的值,然后再去证明.例5 证明下列等式.证明 当时,命题成立.假定对于阶行列式命题也成立,即.则按照第一列展开.所以对于阶行列式命题也成立.得证.2.5 范德蒙德行列式法范德蒙德,Vandermonde,法国数学家,17351796.除了把行列式应用在线性方程组之外,范德蒙德也是第一个行列式本身的表达式以及性质进行研究的数学家,他的主要贡献之一就是用方阵里较小的方阵行列式以表示的行列式方法.这种方法和其他一些相类似的方法,在简化大型的行列式计算方面是有着极其方便的效果的.正因为如此,范德蒙

15、德被认为行列式理论的奠基人. 根据行列式的特点,利用行列式的性质适当的变形,把所求行列式化为已知的或较为简单的形式.范德蒙行列式就是其中的一种.范德蒙德行列式的每一列都是以不同整指数的某个数形式出现的,并且具有很强的规律性.幂次数的变化趋势呈现出由到递增或者递减的这一结构特点,从而把所给的行列式化为范德蒙行列式,然后进行简化计算.定义8 行列式 (9)称为级的范德蒙德行列式.定理1 对任意的级范德蒙德行列式等于这个数所有可能的差的乘积.即.证明 首先对作归纳法.当时,结果是正确的.设对于级的范德蒙德行列式结论成立.在(9)中,第行减去第行的倍,第行减去第行的倍.也就是由上而下依次地从每一行减去

16、它上一行的倍,有后面这行列式是级的范德蒙德行列式,根据归纳法假设,它等于所有可能差的乘积;而包含的差全在前面出现了.故结论对级范德蒙德行列式也成立.推论2 范德蒙德行列式为零的充分必要条件是这个数中至少有两个相等.利用范德蒙德行列式的结论计算并不复杂,难的是如何将给定的行列式化成范式的标准形式.所给行列式各列(或各行) 都是某元素的不同次幂,但其幂次数的排列与范德蒙德行列式不完全相同,需利用行列式性质(如提取公因式,调换各行(或各列) 的次序,拆项等).例6 计算阶行列式.解 显然此行列式与范德蒙行列式是相似的,但还是有所不同,所以要首先利用行列式的性质把它化成范德蒙行列式的类型.首先将行列式

17、的第行依次与第行,行,行,行兑换,再将得到的新的行列式的第行与第行,行,行进行对换,直至最后将第行与第行进行对换,如此,共经过次行对换之后,得到上面式子右端的行列式已经是范德蒙行列式,所以利用范德蒙行列式的结果得.例7 计算行列式解 由 ,可得 2.6 拉普拉斯定理法定义9 在一个级行列式中任意选定行列.位于这些行和列的交点上的个元素按照原来的次序组成一个级行列式,称为行列式的一个级子式.当时,在中划去这行列后余下的元素按照原来的次序组成的级行列式称为级子式的余子式.定理2(拉普拉斯定理) 设在行列式中任意取定了个行,由这行元素组成的一切级子式与它们的代数余子式的乘积的和等于行列式.(证明见高

18、等代数).拉普拉斯定理,在计算行列式的时候,主要应用的是的情形,很少用到一般的形式,不过当行列式的里面零元素很多时,我们运用一般情形的拉普拉斯定理,则会给我们的行列式计算带来很大的方便.拉普拉斯定理四种特殊情形 (i) .(ii) .(iii) (iv) .证明(i) 在左端的行列式中,取定前行,组成的阶式子中只有前列不为.根据拉普拉斯定理得 同样的方法可以证明(ii).证明(iii) 在左端的行列式中,取定前行,组成的阶式子中只有后列不为.根据拉普拉斯定理得.由于与奇偶性相同,所以 同理可证(iv).例8 计算阶行列式解 2.7 拆行(列)法定义10 由行列式拆项性质知,将已知行列式拆成若干

19、个行列式之积,计算其值,再得原行列式值,此法称为拆行(列)法.由行列式的性质4知道,若行列式的某行(列)的元素都是两个数之和,则该行列式可拆成两个行列式的和,这两个行列式的某行(列)分别以这两数之一为该行(列)的元素,而其他各行(列)的元素与原行列式的对应行(列)相同,利用行列式的这一性质,有时较容易求得行列式的值.例9 设n阶行列式且满足对任意数,求阶行列式.解 .,且,有.因,也为反对称矩阵.又为的元素.故.从而知.2.8 用构造法解行列式构造法是运用数学的基本思想经过认真的观察,深入的思考,移联想,确思维,妙地、合理地构造出某些元素,种模式,问题转化为新元素的问题,转化为新元素之间的一种

20、新的组织形式,而使问题得以解决.有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解或者我们已经熟知的行列式,从而达到简介计算行列式的目的.例10 设,证明.证明 构造出多项式参考文献1 京大学数学系几何与代数教研室代数小组.高等待数M.2版.北京:高等教育出版社,2003.2 作中.行列式的计算方法与技巧J.民营科技,2010,8:97-98.3 品超.高等代数新方法M.北京:中国矿业大学出版社,2004.4 世锦.四元数分量行列式的性质N.重庆工商大学学报,自然科报,2010,27(5);452-456.5 新功.行列式计算技巧N.重庆师范大学学报,教学研究,2011,04,89-9

21、2.6 许甫华,张贤科. 高等代数解题方法M.北京:清华大学出版社,2001.7 张秋生.一个行列式的计算技巧J. 数学学习与研究,2013,21.8 樊正华.浅谈行列式的计算方法N.江苏教育学院学报,自然科学报,2011,2,27(1).致 谢作为一名毕业生,写论文是必不可少的.但是对于我来说,写论文并不是手到擒来的小事情,从开始选定课题,到开始写论文,后来修改论文到定稿,每一步都用尽了心思.在这里我要感谢我的论文指导老师*,她总能在我没有方向没有办法的时候给予我帮助.*老师对我的要求很高,对于论文的品质也是极为的严格,但是当她为我指导论文之时又特别的耐心,不因为我的迟钝而急躁,不因为我的论

22、文糟糕而失望,她总是督促,鼓励我完成一篇更好的论文.再次感谢*老师.1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器7. 单片机控制的二级倒立摆系统的研究8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于

23、32位嵌入式单片机系统的图像采集与处理技术的研究11. 基于单片机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO,2激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的

24、研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解

25、调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实

26、现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的数控改造 61.

27、 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计 68. 基于单片机船舶电力推进电机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研究及实现 73.

28、 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究79. 基于单片机的模糊控制器在工业电阻炉上的应用研究 80. 基于双单片机冲床数控系统的研究与开发 81. 基于Cygnal单片机的C/OS-的研究82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与实现 84. 变

29、频调速液压电梯单片机控制器的研究 85. 基于单片机-免疫计数器自动换样功能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计95. 基于MSP430单片机具有数据存储

30、与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机的温度测控系统在温室大棚中的设计与实现103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADC841单片机的防爆软起动综合控制器的研究105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的空调器故障诊断系

31、统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及基上隅角瓦斯积聚处理中的应用研究110. 基于单片机的锅炉智能控制器的设计与研究 111. 超精密机床床身隔振的单片机主动控制 112. PIC单片机在空调中的应用 113. 单片机控制力矩加载控制系统的研究 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功!项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功!单片机论文,毕业设计,毕业论文,单片机设计,硕士论文,研究生论文,单片机研究论文,单片机设计论文,优秀毕业论文,毕业论文设计,毕业过关论文,毕业设计,毕业设计说明,毕业论文,单片机论文,基于单片机论文,毕业论文终稿,毕业论文初稿,本文档支持完整下载,支持任意编辑!本文档全网独一无二,放心使用,下载这篇文档,定会成功!18

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服