ImageVerifierCode 换一换
格式:PDF , 页数:367 ,大小:14.81MB ,
资源ID:5052710      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5052710.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【wei****ing】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【wei****ing】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(太阳能电池器件物理Solar Cell Device Physics(英文版).pdf)为本站上传会员【wei****ing】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

太阳能电池器件物理Solar Cell Device Physics(英文版).pdf

1、Solar Cell Device PhysicsSolar Cell Device PhysicsSecond EditionStephen J.FonashAMSTERDAM BOSTON HEIDELBERG LONDONNEW YORK OXFORD PARIS SAN DIEGOSAN FRANCISCO SINGAPORE SYDNEY TOKYOAcademic Press is an imprint of ElsevierAcademic Press is an imprint of Elsevier30 Corporate Drive,Suite 400,Burlington

2、,MA 01803,USAThe Boulevard,Langford Lane,Kidlington,Oxford,OX5 1GB,UK 2010 Elsevier Inc.All rights reserved.No part of this publication may be reproduced or transmitted in any form or by any means,electronic or mechanical,including photocopying,recording,or any information storage and retrieval syst

3、em,without permission in writing from the publisher.Details on how to seek permission,further information about the Publishers permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,can be found at our website: book and

4、the individual contributions contained in it are protected under copyright by the Publisher(other than as may be noted herein).NoticesKnowledge and best practice in this field are constantly changing.As new research and experience broaden our understanding,changes in research methods,professional pr

5、actices,or medical treatment may become necessary.Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,methods,compounds,or experiments described herein.In using such information or methods they should be mindful of their own sa

6、fety and the safety of others,including parties for whom they have a professional responsibility.To the fullest extent of the law,neither the Publisher nor the authors,contributors,or editors,assume any liability for any injury and/or damage to persons or property as a matter of products liability,n

7、egligence or otherwise,or from any use or operation of any methods,products,instructions,or ideas contained in the material herein.Library of Congress Cataloging-in-Publication DataFonash,S.J.Solar cell device physics/Stephen J.Fonash.2nd ed.p.cm.Includes bibliographical references and index.ISBN 97

8、8-0-12-374774-7(alk.paper)1.Solar cells.2.Solid state physics.I.Title.TK2960.F66 2010621.31244 dc22 2009045478British Library Cataloguing-in-Publication DataA catalogue record for this book is available from the British Library.For information on all Academic Press publications,visit our website:Pri

9、nted in United States of America10 11 12 13 14 15 9 8 7 6 5 4 3 2 1To the memory of my parents,Margaret and Raymond,who showed me the path of intellectual pursuitsTo my wife Joyce for her continuing guidance and support along the wayTo my sons Steve and Dave,and their families,for making the journey

10、 so enjoyablePrefaceAs was the case with the first edition of Solar Cell Device Physics,this book is focused on the materials,structures,and device physics of photovoltaic devices.Since the first edition was published,much has happened in photovoltaics,such as the advent of excitonic cells and nanot

11、echnology.Capturing the essence of these advances made writ-ing both fun and a challenge.The net result is that Solar Cell Device Physics has been almost entirely rewritten.A unifying approach to all the developments is used throughout the new edition.For example,this unifying approach stresses that

12、 all solar cells,whether based on absorp-tion that produces excitons or on absorption that directly produces free electronhole pairs,share the common requirement of needing a struc-ture that breaks symmetry for the free electrons and holes.The breaking of symmetry is ultimately what is required to e

13、nable a solar cell to pro-duce electric power.The book takes the perspective that this breaking of symmetry can occur due to built-in electrostatic fields or due to built-in effective fields arising from spatial changes in the density of states dis-tribution(changes in energy level positions,number,

14、or both).The elec-trostatic-field approach is,of course,what is used in the classic silicon pn junction solar cell.The effective-fields approach is,for example,what is exploited in the dye-sensitized solar cell.This edition employs both analytical and numerical analyses of solar cell structures for

15、understanding and exploring device physics.Many of the details of the analytical analyses are contained in the appendices,so that the development of ideas is not interrupted by the development of equations.The numerical analyses employ the computer code Analysis of Microelectronic and Photovoltaic S

16、tructures(AMPS),which came out of,and is heavily used by,the authors research group.AMPS is utilized in the introductory sections to augment the understanding of the origins of photovoltaic action.It is used in the chapters dedicated to different cell types to give a detailed examination of the full

17、 gamut of solar cell types,from inorganic pn junctions to organic heterojunctions xii Prefaceand dye-sensitized cells.The computer modeling provides the dark and light current voltage characteristics of cells but,more importantly,it is used to“pry open cells”to examine in detail the current componen

18、ts,the electric fields,and the recombination present during operation.The various examples discussed in the book are available on the AMPS Web site(www.ampsmodeling.org).The hope is that the reader will want to examine the numerical modeling cases in more detail and perhaps use them as a tool to fur

19、ther explore device physics.It should be noted that some of the authors specific ways of doing things have crept into the book.For example,many texts use q for the magnitude of the charge on an electron,but here the symbol e is used throughout for this quantity.Also kT,the measure of random thermal

20、energy,is in electron volts(0.026 eV at room temperature)everywhere.This means that terms that may be written elsewhere as eqV/kT appear here as eV/kT with V in volts and kT in electron volts.It also means that expressions like the Einstein relation between diffusivity Dp and mobil-ity p for holes,f

21、or example,appear in this book as Dp kTp.Photovoltaics will continue to develop rapidly as alternative energy sources continue to gain in importance.This book is not designed to be a full review of where we have been or of where that development is now,although each is briefly mentioned in the devic

22、e chapters.The intent of the book is to give the reader the fundamentals needed to keep up with,and contribute to,the growth of this exciting field.AcknowledgmentsAs with the first edition,this book has grown out of the graduate-level solar cell course that the author teaches at Penn State.It has pr

23、ofited considerably from the comments of the many students who have taken this course.All the students and post-docs who have worked in our research group have also contributed to varying degrees.Outstanding among these is Dr.Joseph Cuiffi who aided greatly in the numerical modeling used in this tex

24、t.The efforts of Lisa Daub,Darlene Fink and Kristen Robinson are also gratefully acknowledged.They provided outstanding assistance with fig-ures and references.Dr.Travis Benanti,Dr.Wook Jun Nam,Amy Brunner,and Zac Gray contributed significantly in various ways,from proofread-ing to figure generation

25、.The help of all these people,and others,made this book a possibility.The encouragement and understanding of my wife Joyce made it a reality.List of Symbols Element Description(Units)Absorption coeffi cient(nm 1,cm 1)1 Dimensionless quantity describing ratio of n-portion quasi-neutral region length

26、to hole diffusion length 2 Dimensionless quantity describing ratio of n-portion quasi-neutral region length to the absorption length 3 Dimensionless quantity describing ratio of top-surface hole carrier recombination velocity to hole diffusion-recombination velocity in the n-portion 4 Dimensionless

27、quantity describing ratio of the absorber thickness up to the beginning of the quasi-neutral region in the p-portion to absorption length 5 Dimensionless quantity describing ratio of p-portion quasi-neutral-region length to electron diffusion length 6 Dimensionless quantity describing ratio of the p

28、-portion quasi-neutral-region length to absorption length 7 Dimensionless quantity describing ratio of back-surface electron carrier recombination velocity to the electron diffusion-recombination velocity Band-to-band recombination strength parameter(cm3s1)Magnitude of the energy shift caused by an

29、interface dipole(eV)Thickness of dye monolayer in DSSC(nm)Grain size in polycrystalline materials(nm)C Conduction-band offset between two materials at a heterojunction(eV)xvi List of Symbols V Valence-band offset between two materials at a heterojunction(eV)0()Photon flux per bandwidth as a function

30、 of wavelength(m2s1 per bandwidth in nm)B Schottky barrier height of an M-S or M-I-S structure(eV)BI Energy difference between E C and E F for an n-type material or the energy difference between E F and E V for a p-type material at the semiconductor surface in an M-I-S structure(eV)C Photon flux cor

31、rected for reflection and absorption before entering a material(cm2s1per bandwidth in nm)W Workfunction of a material(eV)WM Workfunction of a metal(eV)Wn Workfunction of an n-type semiconductor(eV)Wp Workfunction of a p-type semiconductor(eV)Permittivity (F/cm)Device power conversion effi ciency Wav

32、elength of a photon or phonon(nm)Gi Mobility of charge carriers in localized gap states(cm2/V-s)n Electron mobility(cm2/V-s)p Hole mobility(cm 2/V-s)Frequency of electromagnetic radiation(Hertz)Electric field strength(V/cm)0 Electric field present at thermodynamic equilibrium(V/cm)Electron effective

33、 force fi eld(V/cm)n Hole effective force fi eld(V/cm)p Charge density(C/cm 3)List of Symbols xvii n Cross-section of a localized state for capturing an electron(cm2)p Cross-section of a localized state for capturing a hole(cm2)E Exciton lifetime(s)RLn Electron lifetime(dictated by,n,or nA )for p-ty

34、pe n material(s)A Electron Auger lifetime for p-type material(s)n L Electron S-R-H recombination lifetime for p-type mate-n rial(s)R Electron radiative recombination lifetime for p-type n material(s)RLp Hole lifetime(dictated by,or A )for n-type pp p material(s)Ap Hole Auger lifetime for n-type mate

35、rial(s)L Hole S-R-H recombination lifetime for n-type p material(s)R Hole radiative recombination lifetime for n-type mate-p rial(s)Electron affi nity(eV)a Lattice constant(nm)Aabs Absorbance A*Effective Richardson constant(120 A/cm2/K2 for free electrons)(A/cm2/K2)AA1A Rate constant for the Auger r

36、ecombination shown in Figure 2.18a(cm6/s)AA1B Rate constant for the Auger recombination shown in Figure 2.18b(cm6/s)AA1C Rate constant for the Auger transition shown in Figure 2.18c(cm6/s)AA1D Rate constant for the Auger transition shown in Figure 2.18d(cm6/s)c xviii List of SymbolsAA1E Rate constan

37、t for the Auger transition shown in Figure 2.18e(cm6/s)AA1F Rate constant for the Auger transition shown in Figure 2.18f(cm6/s)AA2A Rate constant for the Auger generation corresponding to Figure 2.18a(s1)AA2B Rate constant for the Auger generation corresponding to Figure 2.18b(s1)AC Solar cell area

38、collecting photons in a concentrator cell(cm2 or m2)cAC Used in the density of states model g(E)e 1 2/3eV3 2AE Ec)(cm)(c AS Solar cell area generating current in a concentrator cell(cm2 or m2)vAV Used in the density of states model g(E)e 1 2/3eV3 2AEv E)(cm)(v Speed of light(2.998 1017 nm/s)d Distan

39、ce or position in a device(cm,nm)DE Exciton diffusion coeffi cient(cm 2/s)Dn Electron diffusion coefficient or diffusivity(cm 2/s)TDn Electron thermal diffusion(Soret)coeffi cient(cm 2/K-s)Dp Hole diffusion coefficient or diffusivity(cm 2/s)TDp Hole thermal diffusion(Soret)coeffi cient(cm 2/K-s)e Ch

40、arge on an electron(1.6 1019 C)E Energy of an electron,photon,or phonon(eV)EC Energy of the conduction-band edge,often called the LUMO for organic semiconductors(eV)EFn Spatially varying electron quasi-Fermi level(eV)EFp Spatially varying hole quasi-Fermi level(eV)Egm Mobility band gap(eV)List of Sy

41、mbols xix EG Band gap(eV)Epn Energy of a phonon(eV)Ept Energy of a photon(eV)E0 Energy parameter in the model for the Franz-Keldysh effect defined by E 0 3 (m*)1/3(e )2/3 6.25 1018 2with m *,and expressed in MKS units(eV)EV Energy of the valence-band edge,often called the HOMO for organic semiconduc

42、tors(eV)EVL Vacuum level energy(eV)Fe Total force experienced by an electron where F e e(d/dx)kT(dlnN/dx)Computed usingnC all terms in MKS units.Arises from the electric fi eld and the electron effective fi eld.(Newtons)Fh Total force experienced by a hole where Fh e(d(E)/dx)kT(dlnNV/dx)Computedp us

43、ing all terms in MKS units.Arises from the electric field and the hole effective fi eld.(Newtons)gAA Carrier thermal generation rate for Auger process of Figure 2.18a(cm3-s1)g AB Carrier thermal generation rate for Auger process of Figure 2.18b(cm3-s1)g(E)Density of states in energy per volume(eV 1c

44、m3)cg(E)Conduction-band density of states per volume e(eV1cm3)vg(E)Valence-band density of states per volume(eV 1cm3)e gpn(E)Phonon density of states(eV 1cm3)gthR Number thermally generated electrons in the conduction band and holes in the valence band per time per volume due to band-to-band transit

45、ions(cm 3-s1)G(,x)Number of Processes 3 5(see Fig.2.11)absorption events occurring per time per volume of material per 1bandwidth(cm3-s-nm1)xx List of Symbols G Gn Gp Gn ph(,x)Gp ph(,x)Gph(,x)h I()I I I(x)I0 J J0 JDK JFE JI Exciton generation rate(cm 3-s1)Represents any electron generation rate(cm 3

46、-s1)Represents any hole generation rate(cm 3-s1)Free electron generation rate per time per volume of 1material per bandwidth(cm3-s-nm1)Free hole generation rate per time per volume of mate1rial per bandwidth(cm3-s-nm1)Free carrier generation rate per time per volume of material per bandwidth.Used wh

47、en Gn ph(,x).ph(,x)Gp 1(cm3-s-nm1)Plancks constant(4.14 1015 eV-s)Plancks constant divided by 2 (1.32 1015 eV-s)Photon flux impinging on a device(cm 2-s1)Electrical current produced by a device(A)Exciton dissociation rate per area of interface(cm2-s1)Intensity(photons per area per bandwidth)of light

48、 as it 1travels through a material(cm 2-s-nm1)Intensity of incident light(photons per area per band1width)(cm2-s-nm1)Current density;terminal current density emerging from the device(A/cm 2)Pre-exponential term in the multistep tunneling model BTJMS J0e eAV(A/cm2)Dark current density(A/cm 2)Interfac

49、e current density arising from field emission at a junction(A/cm2)Prefactor in the interface recombination current model V/n kTI(I)(A/cm2)J e 1 List of Symbols xxi JIR Interface current density arising from trap-assisted interface recombination.Also,specifi cally,current density lost to interface re

50、combination at a heterojunction.(A/cm2)Jmp Current density at the maximum power point(A/cm 2)JMS Current density arising from multistep tunneling at a junction(A/cm2)Jn Conventional electron(conduction-band)current density(A/cm2)JOB Current density coming over an energy barrier at an interface(A/cm

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服