ImageVerifierCode 换一换
格式:PPTX , 页数:55 ,大小:813KB ,
资源ID:5036200      下载积分:14 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5036200.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(物理电动公开课一等奖优质课大赛微课获奖课件.pptx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

物理电动公开课一等奖优质课大赛微课获奖课件.pptx

1、电动电动力学主要内容力学主要内容电磁场电磁场普遍规普遍规律律静电场静电场静磁场静磁场电磁波电磁波辐射辐射电磁波电磁波传播传播相对论相对论带电粒子和电磁带电粒子和电磁带电粒子和电磁带电粒子和电磁场互相作用场互相作用场互相作用场互相作用第1页第1页第一章电磁场普遍规律(电动力学出发点)基本试验定律基本试验定律基本试验定律基本试验定律 1.1.库仑定律库仑定律库仑定律库仑定律 2.2.安培定律安培定律安培定律安培定律 3.3.毕奥毕奥毕奥毕奥沙伐尔定律沙伐尔定律沙伐尔定律沙伐尔定律 4.4.法拉第电磁感应定律法拉第电磁感应定律法拉第电磁感应定律法拉第电磁感应定律 5.5.电荷守恒定律电荷守恒定律电荷

2、守恒定律电荷守恒定律 叠加叠加原理原理推广推广 麦克斯韦方程组麦克斯韦方程组洛仑兹力洛仑兹力 电磁电磁场基场基本本方方程程第2页第2页第二章静静 电电 场场第3页第3页形成统一电磁场形成统一电磁场形成统一电磁场形成统一电磁场u电荷激发电场电荷激发电场,电流激发磁场。电流激发磁场。改变着电场和磁场能够互相激发改变着电场和磁场能够互相激发,电场和磁场成为统一整体电场和磁场成为统一整体电磁场。电磁场。它它们们所所满满足足方方程程也也就就应应当当构构成成一一个个统统一一体体,这这就是著名就是著名麦克斯韦方程组麦克斯韦方程组引 言第4页第4页形成统一电磁场形成统一电磁场形成统一电磁场形成统一电磁场l 在

3、普通情况下在普通情况下,电场和磁场互相联系电场和磁场互相联系,是统一电磁是统一电磁现象两个方面。但是,现象两个方面。但是,当场源即电荷、电流不随时当场源即电荷、电流不随时间改变时,它们所激发电磁场(量)也不随时间改间改变时,它们所激发电磁场(量)也不随时间改变,这样场称为静态场。变,这样场称为静态场。第5页第5页 第6页第6页 l当电磁场量不随时间改变,当电磁场量不随时间改变,电场满足方程和磁场满电场满足方程和磁场满足方程是互相独立。足方程是互相独立。表明,在静态情况下,电场和磁场是独立存在。表明,在静态情况下,电场和磁场是独立存在。l 静态场是电磁场特殊形式,包括静态场是电磁场特殊形式,包括

4、静电场、静磁场本静电场、静磁场本章首先对静电场进行研究和讨论。章首先对静电场进行研究和讨论。第7页第7页关于静关于静电场电场研究研究静电场:相对于观测者静止电荷激发电场。静电静电场:相对于观测者静止电荷激发电场。静电场可单独存在场可单独存在l 静电场满足下列两个条件静电场满足下列两个条件:即即 电荷静止不动;电荷静止不动;场量不随时间改变。场量不随时间改变。l 另外对于静电场另外对于静电场:第8页第8页关于静关于静电场电场研究研究l 边值关系:边值关系:l 基本方程:基本方程:第9页第9页l 电电磁性磁性质质方程:方程:静静电电平衡平衡时导时导体:体:导体内导体内外表面外表面电荷分布在表面上,

5、电场处处垂直于导体表面电荷分布在表面上,电场处处垂直于导体表面 均匀各向同性均匀各向同性线线性介性介质质:第10页第10页静电场研究问题静电场研究问题静电场研究问题静电场研究问题给定自由电荷以及周围空间介质和导体情况下给定自由电荷以及周围空间介质和导体情况下给定自由电荷以及周围空间介质和导体情况下给定自由电荷以及周围空间介质和导体情况下,如何求解静电场如何求解静电场如何求解静电场如何求解静电场?由于静电场基本方程是矢量方程,求解很难,因由于静电场基本方程是矢量方程,求解很难,因此本章我们此本章我们引进一个静电场标量势函数引进一个静电场标量势函数,简称标势来求解静电场。简称标势来求解静电场。研究

6、思绪研究思绪:第11页第11页内内 容容 目录目录第二章第二章 静电场静电场2-1 静电势及其微分方程静电势及其微分方程2-2 唯一性定理唯一性定理2-3 分离变量法分离变量法2-4 镜像法镜像法2-5 格林函数法格林函数法2-6 电多极矩法电多极矩法第12页第12页2-1 静电场标势静电场标势及其微分方程和边值关系及其微分方程和边值关系第13页第13页1 1电标势引入电标势引入一、静电场标势静静电场标势电场标势事事实实上就是上就是电电磁磁学中学中电势电势V对于静电场对于静电场注:注:取取负负号号是是为为了与了与电电磁学磁学讨论讨论一致一致第14页第14页VV+dVPQ回顾电磁学中回顾电磁学中

7、电势与电场强度微分关系电势与电场强度微分关系第15页第15页某点电场强度等于该点电势梯度负值,某点电场强度等于该点电势梯度负值,某点电场强度等于该点电势梯度负值,某点电场强度等于该点电势梯度负值,这就是电势与电场强度微分关系。这就是电势与电场强度微分关系。这就是电势与电场强度微分关系。这就是电势与电场强度微分关系。负号表示:负号表示:电场强度电场强度方向恒指向电势降落方向恒指向电势降落方向方向.第16页第16页2 2、电势差、电势差第17页第17页3 3、电势、电势 电势值电势值不是唯一,不是唯一,为为了使了使场场中每一点中每一点电势电势含有含有拟拟定定值值,必,必须选择场须选择场中某一个固定

8、点作中某一个固定点作为电势为电势参考参考点点通常选无穷远为电势参通常选无穷远为电势参考点考点 (1)电电荷分布在有限区域,荷分布在有限区域,P P点电势为将单位点电势为将单位正电荷从正电荷从P P移到移到电场力所做功。电场力所做功。(2 2)电荷分布在无限区域不能选无穷远点电荷分布在无限区域不能选无穷远点作参考点,不然积分将无穷大。作参考点,不然积分将无穷大。第18页第18页均匀电场每一点强度均匀电场每一点强度Eo o相同相同,其电场线为平行直线其电场线为平行直线.选空间任一点为选空间任一点为原点原点,并设该点上电势为并设该点上电势为 o,则得则得任一点任一点P处电势处电势 例题求求均匀电场均

9、匀电场电势电势xyzPrOO第19页第19页xyzPrOO均匀电场能够看作由无穷大均匀电场能够看作由无穷大平行板电容器产生平行板电容器产生,其电荷其电荷分布不在有限区城内分布不在有限区城内,因此因此不能选不能选 ()0.若选若选 o 0,则有则有第20页第20页4、电电荷分布在有限区几种情况荷分布在有限区几种情况电势计算电势计算(1)真空中)真空中点点电电荷荷 QPQP(2)无限大均匀)无限大均匀线线性介性介质质中点中点电电荷荷 第21页第21页Q 产产生生电势电势 产产生生电势电势(3)无限大均匀无限大均匀线线性介性介质质中点中点电电荷荷 QP第22页第22页3、电电荷分布在有限区几种情况荷

10、分布在有限区几种情况电势计算电势计算总结总结点点电电荷荷 QP(3 3)离散点电荷系统)离散点电荷系统Q1QnQiP第23页第23页Pzxy-Q-QQ Qu 电偶极子产生电势电偶极子产生电势解:解:电电偶极子:偶极子:两个相距两个相距为为同量异号点同量异号点电电荷构成荷构成系统系统偶极矩偶极矩 P点电势点电势:(无(无穷远为穷远为零点)零点)第24页第24页若电偶极子放在均匀介质若电偶极子放在均匀介质中(无限大介质):中(无限大介质):均匀介质中点电荷产生束缚电荷分布在自由点电荷均匀介质中点电荷产生束缚电荷分布在自由点电荷附近,介质中电偶极子产生势为自由偶极子与束缚附近,介质中电偶极子产生势为

11、自由偶极子与束缚偶极子产生势迭加,设偶极子产生势迭加,设 为为束缚电荷,束缚电荷,第25页第25页yxz(4)电荷连续分布带电体第26页第26页OOn n若已知若已知若已知若已知 ,原则上可求出静电势和电场。,原则上可求出静电势和电场。,原则上可求出静电势和电场。,原则上可求出静电势和电场。n n但但但但是是是是在在在在许许许许多多多多实实实实际际际际情情情情况况况况 不不不不总总总总是是是是已已已已知知知知。比比比比如如如如,空空空空间间间间存存存存在在在在导导导导体体体体介介介介质质质质,导导导导体体体体上上上上会会会会出出出出现现现现感感感感应应应应电电电电荷荷荷荷分分分分布布布布,介介

12、介介质质质质中中中中会会会会出出出出现现现现束束束束缚缚缚缚电电电电荷荷荷荷分分分分布布布布,这这这这些些些些电电电电荷荷荷荷分分分分布布布布普普普普通通通通是不知道或不可测是不知道或不可测是不知道或不可测是不知道或不可测第27页第27页电荷分布无法预先知道情况下,电荷分布无法预先知道情况下,提出两个问题提出两个问题:(1)未知,如何求解未知,如何求解(2)什么条件下,可唯一拟定什么条件下,可唯一拟定处理(处理(1):):需要寻找电势满足需要寻找电势满足微分方程和边值关系微分方程和边值关系处理(处理(2):):静电场唯一性定理静电场唯一性定理第28页第28页二、静电势微分方程和边值关系静电势微

13、分方程和边值关系 1.电势电势满满足方程足方程适合用于各向同性,适合用于各向同性,线性均匀线性均匀介质介质l 泊松方程泊松方程导导出出过过程程 其中其中其中其中 为自由电荷体密度。为自由电荷体密度。为自由电荷体密度。为自由电荷体密度。第29页第29页泊松泊松(Possion)(Possion)方程方程描述描述描述描述均匀、各向同性、线性介质中均匀、各向同性、线性介质中均匀、各向同性、线性介质中均匀、各向同性、线性介质中静电场基本方程:泊静电场基本方程:泊静电场基本方程:泊静电场基本方程:泊松(松(松(松(PoissonPoisson)方程)方程)方程)方程.l 拉普拉斯方程拉普拉斯方程 若研究

14、区域自由电荷体密度为零,若研究区域自由电荷体密度为零,若研究区域自由电荷体密度为零,若研究区域自由电荷体密度为零,=0 0描述描述描述描述无自由电荷分布均匀、各向同性、线性介质中无自由电荷分布均匀、各向同性、线性介质中无自由电荷分布均匀、各向同性、线性介质中无自由电荷分布均匀、各向同性、线性介质中静静静静电场基本方程:拉普拉斯方程电场基本方程:拉普拉斯方程电场基本方程:拉普拉斯方程电场基本方程:拉普拉斯方程.第30页第30页2 2静电势边值关系静电势边值关系静电场基本边静电场基本边值关系值关系导导出出第31页第31页第32页第32页内内 容容 目录目录第二章第二章 静电场静电场2-1 静电势及

15、其微分方程静电势及其微分方程2-2 唯一性定理唯一性定理2-3 分离变量法分离变量法2-4 镜像法镜像法2-5 格林函数法格林函数法2-6 电多极矩法电多极矩法第33页第33页2-1 静电场标势静电场标势及其微分方程和边值关系及其微分方程和边值关系第34页第34页u 静电场标势静静电场标势电场标势简简称称电势电势对于静电场对于静电场第35页第35页泊松泊松(Possion)(Possion)方程方程描述描述描述描述均匀、各向同性、线性介质中均匀、各向同性、线性介质中均匀、各向同性、线性介质中均匀、各向同性、线性介质中静电场基本方程:静电场基本方程:静电场基本方程:静电场基本方程:泊松(泊松(泊

16、松(泊松(PoissonPoisson)方程)方程)方程)方程.l 拉普拉斯方程拉普拉斯方程 若研究区域自由电荷体密度为零,若研究区域自由电荷体密度为零,若研究区域自由电荷体密度为零,若研究区域自由电荷体密度为零,f f=0 0描述描述描述描述无自由电荷分布均匀、各向同性、线性介质中无自由电荷分布均匀、各向同性、线性介质中无自由电荷分布均匀、各向同性、线性介质中无自由电荷分布均匀、各向同性、线性介质中静静静静电场基本方程:拉普拉斯方程电场基本方程:拉普拉斯方程电场基本方程:拉普拉斯方程电场基本方程:拉普拉斯方程.u 静电场标势满足微分方程第36页第36页静电势边值关系静电势边值关系第37页第3

17、7页两绝缘介质分界面边值关系绝缘介质1绝缘介质2第38页第38页u导体导体-介质表面上边值关系介质表面上边值关系令导体为介质令导体为介质令导体为介质令导体为介质1 1 1 1第39页第39页在静止情况下在静止情况下,导体静电平衡条件为:导体静电平衡条件为:(1)(1)导体内部不带电导体内部不带电,电荷只能分布于导体表面上电荷只能分布于导体表面上;(2)(2)导体导体内部电场为零内部电场为零;(3)(3)导体表面上电场沿法线方向导体表面上电场沿法线方向,导体表面为等势面导体表面为等势面.整个导体电势相等整个导体电势相等第40页第40页一侧为导体边值关系导体1介质2第41页第41页静电场问题静电场

18、问题求解下列方程问题求解下列方程问题第42页第42页例例.真空中静电场电势为真空中静电场电势为求产生该电场电荷分布求产生该电场电荷分布ox12第43页第43页解解:由静电势方程由静电势方程ox12因此因此电荷只能分布在电荷只能分布在x=0=0面上面上第44页第44页电荷只能分布在电荷只能分布在x=0=0面上,面上,设电荷面密度为设电荷面密度为f 依据依据边值关系边值关系ox12n第45页第45页 三、三、静电场能量静电场能量在在在在静静静静电场中,电场电场中,电场电场中,电场电场中,电场能量密度能量密度能量密度能量密度为:为:为:为:静静静静电场总能量为:电场总能量为:电场总能量为:电场总能量

19、为:对于静电场对于静电场问题:问题:问题:问题:利用利用利用利用电标势电标势电标势电标势,如何表示,如何表示,如何表示,如何表示静电场总能量?静电场总能量?静电场总能量?静电场总能量?第46页第46页关于关于电磁场能量电磁场能量l电磁场运动和其它运动相比有它特殊性一面电磁场运动和其它运动相比有它特殊性一面电磁场运动和其它运动相比有它特殊性一面电磁场运动和其它运动相比有它特殊性一面,但也但也但也但也有普遍性一面有普遍性一面有普遍性一面有普遍性一面,其普遍性反应是各种运动形式其普遍性反应是各种运动形式其普遍性反应是各种运动形式其普遍性反应是各种运动形式有共有共有共有共同运动量度同运动量度同运动量度

20、同运动量度能量。能量。能量。能量。运动形式之间转化伴伴随能量运动形式之间转化伴伴随能量运动形式之间转化伴伴随能量运动形式之间转化伴伴随能量转化,且转化过程中满足能量守恒。转化,且转化过程中满足能量守恒。转化,且转化过程中满足能量守恒。转化,且转化过程中满足能量守恒。电磁场运动能量特点:电磁场中各点都存在能量,不同点能量分布不同;因为场运动,场能量不是固定分布于空间中,而是伴伴随场运动而在空间传输第47页第47页关于关于电磁场能量电磁场能量l为了描述电磁场能量需要引入两个物理量:为了描述电磁场能量需要引入两个物理量:为了描述电磁场能量需要引入两个物理量:为了描述电磁场能量需要引入两个物理量:能量

21、密度:能量密度:能量密度:能量密度:能流密度:能流密度:能流密度:能流密度:单位体积内能量单位体积内能量单位体积内能量单位体积内能量 其大小等于单位时间内垂直通过其大小等于单位时间内垂直通过其大小等于单位时间内垂直通过其大小等于单位时间内垂直通过单位面积能量,单位面积能量,单位面积能量,单位面积能量,其方向代表能量传播方向其方向代表能量传播方向其方向代表能量传播方向其方向代表能量传播方向第48页第48页在在在在线性线性线性线性介质中介质中介质中介质中静静静静电场总能量为电场总能量为电场总能量为电场总能量为问题:问题:问题:问题:利用利用利用利用电标势电标势电标势电标势,如何表示,如何表示,如何

22、表示,如何表示静电场总能量?静电场总能量?静电场总能量?静电场总能量?第49页第49页 1/1/r,D 1/1/r2,面积面积 r2 2,r 积分区域积分区域积分区域积分区域V V为为为为电电电电荷分布荷分布荷分布荷分布区域。区域。区域。区域。问题:问题:利用利用利用利用电标势电标势电标势电标势,如何表示,如何表示,如何表示,如何表示静电场总能量为?静电场总能量为?静电场总能量为?静电场总能量为?第50页第50页电荷分布电荷分布 所激发电场总能量所激发电场总能量 注意:注意:(1)上式只能用于计算静电场总能量。上式只能用于计算静电场总能量。(2)不是能量密度。不是能量密度。由于能量分布在电场内

23、,而不但在电荷分布区域内由于能量分布在电场内,而不但在电荷分布区域内由于能量分布在电场内,而不但在电荷分布区域内由于能量分布在电场内,而不但在电荷分布区域内.第51页第51页孤立导体孤立导体孤立导体孤立导体球球球球电容电容电容电容R例题)例题)求二分之一径为求二分之一径为R,带电,带电Q Q金属球周围所贮金属球周围所贮藏电场能。藏电场能。第52页第52页例题例题1 1)求二分之一径为)求二分之一径为R R,带电,带电Q Q金属球周围所贮金属球周围所贮藏电场能。藏电场能。R+解:分割成许多厚度为解:分割成许多厚度为dr薄球壳,半径薄球壳,半径r处电场能处电场能量密度为量密度为Qdrr第53页第53页drR+Qr能量密度:能量密度:第54页第54页例题例题 求带电量求带电量Q、半径为、半径为a导体球静电场总能量。导体球静电场总能量。整个导体为等势体整个导体为等势体,导体球电荷分布于球面上,可导体球电荷分布于球面上,可知球面上电势为知球面上电势为因此静电场总能量为因此静电场总能量为解:解:第55页第55页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服