1、2010年陕西省中考数学试题第一部分(选择题共30分)一、 选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1. ( )A.3B.C. D.2.如图,点在直线上,且.若,则的大小为 ( )A. B. C. D. 3.计算的结果是 ( )A. B.C. D.4.如图是由正方形和圆锥组成的几何体,它的俯视图是( )5.一个正比例函数的图象经过点(2,),它的表达式为 ( )A. B.C. D.6.中国2010年上海世博会充分体现着“城市,让生活更美好”的主题.据统计:5月1日到5月7日入园人数(单位:万人)分别为20.3,21.5,13.2,14.6,10.9,11.3,
2、13.9.这组数据的中位数和平均数分别为 ( )A. 14.6,15.1 B. 14.6,15.0C. 13.9,15.1 D. 13.9,15.07.不等式组的解集是 ( )A. B. C. D. 8.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为 ( )A. 16 B. 8C. 4 D. 19.如图,点、在上,且.若点是上的动点,要使为等腰三角形,则所有符合条件的点有( )A. 1个 B. 2个C. 3个 D. 4个10.已知抛物线,将抛物线平移得到抛物线.若两条抛物线、关于直线对称,则下列平移方法中,正确的是 ( )A.将抛物线向右平移个单位 B.将抛物线向右平移3个单位C.将抛
3、物线向右平移5个单位 D.将抛物线向右平移6个单位第二部分(非选择题共90分)二、填空题(共6小题,每小题3分,计18分)11.在五个数中,最小的数是_.12.方程的解是_.13.如图,在中,是边上一点,连接.要使与相似,应添加的条件是_.(只需写出一个条件即可)14.如图是一条水平铺设的直径为2米的通水管道横截面,其水面宽为1.6米,则这条管道中此时水最深为_米.15.已知,都在反比例函数的图象上,若则的值为_.16.如图,在梯形中,.若则梯形的面积为_.三、解答题(共9小题,计72分.解答应写出过程)17(本题满分5分)化简:.18.(本题满分6分)如图,、三点在同一条直线上,.分别以、为
4、边作正方形和正方形,连接.求证:19.(本题满分7分)某县为了了解“五一”期间该县常住居民的出游情况,有关部分随机调查了1 600名常住居民,并根据调查结果绘制了如下统计图:根据以上信息,解答下列问题:(1)补全条形统计图.在扇形统计图中,直接填入出游主要目的是采集发展信息人数的百分数;(2)若该县常住居民共24万人,请估计该县常住居民中,利用“五一”期间出游采集发展信息的人数;(3)综合上述信息,用一句话谈谈你的感想.20.(本题满分8分)在一次测量活动中,同学们要测量某公园湖的码头与它正东方向的亭子之间的距离,如图.他们选择了与码头、亭子在同一水平面上的点,在点处测得码头位于点北偏西方向,
5、亭子位于点北偏东方向;又测得点与码头之间的距离为200米.请你运用以上测得的数据求出码头与亭子之间的距离.(结果精确到1米,参考数据:)21.(本题满分8分)某蒜薹(ti)生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨平均的售价及成本如下表:销售方式批发零售储藏后销售售价(元/吨)3 0004 5005 500成本(元/吨)7001 0001 200若经过一段时间,蒜薹按计划全部售出获得的总利润为(元),蒜薹零售(吨),且零售量是批发量的.(1)求之间的函数关系式;(2)由于条件上限制,经冷库储藏售出的蒜薹最多80吨,求
6、该生产基地按计划全部售完蒜薹获得的最大利润.22.(本题满分8分)某班毕业联欢会设计了即兴表演节目的摸球游戏.游戏采用了一个不透明的盒子,里面装有五个分别标有数字、2、3、4、5的乒乓球.这些球除数字外,其它完全相同.游戏规则是:参加联欢会的50名同学,每人将盒子里的五个乒乓球摇匀后,闭上眼睛从中随机地一次摸出两个球(每位同学必须且只能摸一次).若两个球上的数字之和为偶数,就给大家即兴表演一个节目;否则,下一个同学接着做摸球游戏,依次进行.(1)用列表法或画树状图法求参加联欢会的某位同学即兴表演节目的概率;(2)估计本次联欢会上有多少名同学即兴表演节目?23.(本题满分8分)如图,在,斜边的垂
7、直平分线交于点交于点,连接.(1)若是外接圆的切线,求的大小;(2)当时,求外接圆的半径.24.(本题满分10分)如图,在平面直角坐标系中,抛物线经过三点.(1)求该抛物线的表达式;(2)点在轴上,点在抛物线上,要使以点、为顶点的四边形是平行四边形,求所有满足条件的点的坐标.25.(本题满分12分)问题探究(1)请你在图中作一条直线,使它将矩形分成面积相等的两部分;(2)如图,点是矩形内一定点.请你在图中过点作一条直线,使它将矩形分成面积相等的两部分.问题解决(3)如图,在平面直角坐标系中,直角梯形是某市将要筹建的高新技术开发区用地示意图,其中.开发区综合服务管理委员会(其占地面积不计)设在点
8、处.为了方便驻区单位,准备过点修一条笔直的道路(路的宽度不计),并且使这条路所在的直线将直角梯形分成面积相等的两部分.你认为直线是否存在?若存在,求出直线的表达式;若不存在,请说明理由.2010年陕西中考数学试题答案一选择题题号12345678910答案CBBDACAADC一、 填空题 11、 -2 12、x=0或x=4 13、ACD=B ADC=AOB 14、0.4 15、-12 16、18 三、解答题 17. 解:原式= = = =18 证明:在正方形ABEF中和正方形BCMN中 AB=BE=EF,BC=BN, FEN=EBC=90 AB=2BC EN=BC FNEEBC FN=EC19解
9、(1)如图所示(2)2420=1.8该县常住居民出游人数约为1.8万人(3)略20 ,解:过点P作PH与AB垂足为H则APH=30 APH=30在RTAPH中AH=100,PH=APcos30=100PBH中BH=PHtan43161.60AB=AH+BH 262答:码头A与B距约为260米。21 解:(1)由题意,批发蒜薹3x吨,储藏后销售(200-4x)吨则y=3x(3000-700)+x(4500-1000)+(200-4x)(5500-1200) =-6800x+860000, 来源:Zxxk.Com(2)由题意得 200-4x80 解之得 x30 -6800x+860000 -680
10、00 y的值随x的值增大而减小 当x=30时,y最大值=-6800+860000=656000元22解:(1)如下表:两数和1234513456来源:学#科#网Z#X#X#K23567345784567956789从上表可以看出,一次性共有20种可能结果,其中两数为偶数的共有8种。将参加联欢会的某位同学即兴表演节目记为事件A P(A)=P(两数和为偶数)=8/20=2/5 (2)502/5=20(人) 估计有20名同学即兴表演节目。23解:(1) DE 垂直平分ACDEC=90DC 为DEC外接圆的直径DC的中点 O即为圆心连结OE又知BE是圆O的切线EBO+BOE=90 在RTABC 中 E
11、 斜边AC 的中点BE=ECEBC=C又BOE=2CC+2C=90C=30 (2)在RTABC中AC= EC=AC= ABC=DEC=90 ABCDEC DC= DEC 外接圆半径为24解:(1)设该抛物线的表达式为y=ax+bx+c根据题意,得a- b+c=0 a=9a+3b+c=0 解之,得 b=c=-1 c=-1 所求抛物线的表达式为y=x-x-1 (2)AB为边时,只要PQAB且PQ=AB=4即可。 又知点Q在y轴上,点P的横坐标为4或-4,这时符合条件的点P有两个,分别记为P1,P2 .而当x=4时,y=;当x=-4时,y=7,此时P1(4,)P2(-4,7)当AB为对角线时,只要线
12、段PQ与线段AB互相平分即可又知点Q在Y轴上,且线段AB中点的横坐标为1点P的横坐标为2,这时符合条件的P只有一个记为P3而且当x=2时y=-1 ,此时P3(2,-1)综上,满足条件的P为P1(4,)P2(-4,7)P3(2,-1) 25. 解:(1)如图(2)如图连结AC 、BC交与P则P为矩形对称中心。作直线MP,直线MP即为所求。(3) 如图存在直线l过点D的直线只要作 DAOB与点A 则点P(4,2)为矩形ABCD的对称中心过点P的直线只要平分DOA的面积即可易知,在OD边上必存在点H使得PH将DOA 面积平分。从而,直线PH平分梯形OBCD的面积即直线 PH为所求直线l设直线PH的表
13、达式为 y=kx+b 且点P(4,2)2=4k+b 即b=2-4ky=kx+2-4k直线OD的表达式为y=2x y=kx+2-4k 解之 y=2x 点H的坐标为(,)PH与线段AD的交点F(2,2-2k)02-2k4-1k1SDHF=解之,得。(舍去)b=8-直线l的表达式为y= 2010年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1(3分)考点:绝对值2867872分析:按照绝对值的性质进行求解解答:解:根据负数的绝对值是它的相反数,得:|=故选C点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是02(3分)考
14、点:垂线2867872专题:计算题分析:首先由OCOD,根据垂直的定义,得出COD=90,然后由平角的定义,知AOC+COD+DOB=180,从而得出DOB的度数解答:解:OCOD,COD=90,又AOC+COD+DOB=180,DOB=1803690=54故选B点评:本题主要考查了垂直及平角的定义3(3分)考点:单项式乘单项式2867872分析:根据单项式的乘法法则计算解答:解:(2a2)3a,=(23)(a2a),=6a3故选B点评:本题考查了单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式4(3分)考
15、点:简单组合体的三视图2867872分析:俯视图是从物体上面所看到的图形,可根据各几何体的特点进行判断解答:解:圆锥的俯视图是圆及一点,正方体的俯视图是正方形;由图知:圆锥的底面圆直径与正方形的边长相等,故俯视图中的圆应该内切于正方形故选D点评:本题考查了几何体的三种视图,掌握定义是关键注意所有的看到的棱都应表现在三视图中5(3分)考点:待定系数法求正比例函数解析式2867872专题:待定系数法分析:利用待定系数法即可求解解答:解:设函数的解析式是y=kx根据题意得:2k=3解得:k=故函数的解析式是:y=x故选A点评:本题主要考查了函数的解析式与图象的关系,满足解析式的点一定在图象上,图象上
16、的点一定满足函数解析式6(3分)考点:中位数;众数2867872分析:本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数这几个数的和,除以数据的个数为平均数解答:解:将这组数据从小到大的顺序排列为(10.9,11.3,13.2,13.9,14.6,20.3,21.5),处在中间的是13.9,因此中位数13.9平均数为=15.1故选C点评:本题考查的是中位数和平均数的定义7(3分)考点:解一元一次不等式组2867872分析:先求出各不等式的解集,再求出其公共解集即可解答:解:由(1)去分母得,2x0,移项得,x2,系数化为1得,x2(2)移项
17、、合并同类项得,3x3,系数化为1得,x1故原不等式组的解集为:1x2故选A点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)8(3分)考点:菱形的性质2867872分析:根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解解答:解:设两对角线长分别是:a,b则(a)2+(b)2=22则a2+b2=16故选A点评:本题主要考查了菱形的性质:菱形被两个对角线平分成四个全等的直角三角形9(3分)考点:垂径定理2867872专题:分类讨论分析:根据垂径定理,分两种
18、情况:以AB为底边,可求出有点P1、P2;以AB为腰,可求出有点P3、P4故共4个点解答:解:如图:以AB为底边,过点O作弦AB的垂线分别交O于点P1、P2,AP1=BP1,AP2=BP2,故点P1、P2即为所求以AB为腰,分别以点A、点B为圆心,以AB长为半径画弧,交O于点P3、P4,故点P3、P4即为所求共4个点故选D点评:本题考查了垂径定理:垂直于弦的直径平分线并且平分弦所在的弧10(3分)考点:二次函数图象与几何变换2867872分析:主要是找一个点,经过平移后这个点与直线x=1对称抛物线C与y轴的交点为A(0,10),与A点以对称轴对称的点是B(3,10)若将抛物线C平移到C,就是要
19、将B点平移后以对称轴x=1与A点对称则B点平移后坐标应为(2,10)因此将抛物线C向右平移5个单位解答:解:抛物线C:y=x2+3x10=,抛物线对称轴为x=抛物线与y轴的交点为A(0,10)则与A点以对称轴对称的点是B(3,10)若将抛物线C平移到C,并且C,C关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称则B点平移后坐标应为(2,10)因此将抛物线C向右平移5个单位故选C点评:主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减二、填空题(共6小题,每小题3分,满分18分)11(3分)考点:实数大小比较2867872分析:根据
20、正数大于所有负数,负数绝对值大的反而小进行比较即可解答:解:因为|2|,所以2201故五个数中最小的数是2点评:此题主要考查的实数的大小的比较,实数比较大小的法则:正数大于0,0大于负数,两个负数,绝对值大的反而小12(3分)考点:解一元二次方程-因式分解法2867872专题:计算题分析:x24x提取公因式x,再根据“两式的乘积为0,则至少有一个式子的值为0”求解解答:解:x24x=0x(x4)=0x=0或x4=0x1=0,x2=4故本题的答案是x1=0x2=4点评:本题考查简单的一元二次方程的解法,在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法该题运用了因式分解法13(3分)考
21、点:相似三角形的判定2867872专题:开放型分析:ACD和ABC中,已知了公共角A,若两个三角形相似,则需添加一组对应角相等,或夹A的两组对应边成比例解答:解:ABC和ACD中,DAC=CAB,若要ADC与ABC,需添加的条件为:ADC=ACB;ACD=B;,或AC2=ABAD点评:此题主要考查的是相似三角形的判定方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似14(3分)考点:垂径定理的应用;勾股定理2867872专题:应用题分析:利用垂径定理,以及勾股定理即可求解解答:解:作出弧
22、AB的中点D,连接OD,交AB于点C则ODABAC=AB=0.8m在直角OAC中,OC=0.6m则水深CD=ODOC=10.6=0.4m点评:此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线15.(3分)考点:反比例函数图象上点的坐标特征2867872分析:根据反比例函数上的点的横纵坐标的积等于6作答即可解答:解:A(x1,y1),B(x2,y2)都在图象上,x1y1=6,x2y2=6,x1y1x2y2=36,x1x2=3,y1y2=12点评:本题考查了反比例
23、函数图象上点的坐标特征,反比例函数图象上任意一点横纵坐标的积等于比例系数16(3分)考点:梯形2867872分析:先分别过D和C点向AB作垂线交AB分别为E和F再利用已知条件得到ADE和CBF相似,求出DE或CF,最后用梯形的面积公式得到结果解答:解:法一:分别过D、C点作DEAB于E、CFAB于F设AE=x,BF=y,DE=CF=hADE和BCF都是直角三角形,且A+B=90,ADECBF即h2=xy在ADE中,AD=4,h2=16x2xy=16x2而x+y=ABCD=105=5,y=5xx(5x)=16x2,x=故梯形ABCD的面积为=18法二:过点C作CEAD交AB于E,作CHAB于H,
24、CDAB,四边形AECD是平行四边形,AE=CD=5,CE=AD=4,CEB=A,BE=ABAE=5A+B=90,BCE=90,BC=3,CH=,梯形ABCD的面积为=18点评:考查三角形相似的性质和梯形面积公式三、解答题(共9小题,满分72分)17(5分)考点:分式的加减法2867872专题:计算题分析:把异分母分式转化成同分母分式,然后进行化简解答:解:原式=点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减18(6分)考点:正方形的性质;全等三角形的判定与性质2867872专题:证明题分析
25、:只要判定FNEEBC,就不难证明FN=EC解答:证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,FEN=EBC=90,AB=2BC,即BC=BN=AB,BN=BE,即N为BE的中点,EN=NB=BC,FNEEBC,FN=EC点评:本题集中考查了正方形的性质和全等三角形的判定(1)正方形的四条边相等,四个角相等,都是90,对角线互相垂直、平分;(2)三角形全等的判定定理有SAS、SSS、AAS,ASA,HL等19(7分)考点:条形统计图;用样本估计总体;扇形统计图2867872专题:图表型分析:(1)因为调查了1600名,没有出游的为1000人,所以出游人数为600人
26、;采集发展信息百分比为1减其它三项的差;(2)由条形统计图中可以利用样本估计总体的方法知道出游率为,再用常住居民人数乘以出游率即可求得结果解答:解:(1)如图所示:(2)24=9(万人)该县常住居民出游人数约为9万人点评:本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键20(8分)考点:解直角三角形的应用-方向角问题2867872分析:过P作AB的垂线,设垂足为H在RtAPH中求出AH、PH的长,进而在RtAHB中求得BH的长;由AB=AH+BH即可求出A、B间的距离解答:解:作PHAB于点H则APH=30,在RtAPH中,AH=100,P
27、H=APcos30=100RtPBH中,BH=PHtan43161.60AB=AH+BH262答:码头A与B距约为262米点评:当两个三角形有公共边时,先求出这条公共边是解答此类题目的基本出发点21(8分)(2010陕西)考点:一次函数的应用2867872专题:经济问题分析:(1)利润=批发数量(批发售价批发成本)+零售数量(零售售价零售成本)+储藏数量(储藏售价储藏成本);(2)由库储藏的蒜薹最多80吨,则得2004x80再由y与x之间的函数关系式可求得y的最大值解答:解:(1)由题意,批发蒜薹3x吨,储藏后销售(2004x)吨,则y=3x(3000700)+x(45001000)+(200
28、4x)(55001200),=6800x+860000(0x50)(2)由题意得2004x80解之得x30,6800x+860000且6800x0,y的值随x的值增大而减小,当x=30时,y最大值=680030+860000=656000(元);答:该生产基地按计划全部售完蒜薹获得的最大利润为656000元点评:本题主要考查了一次函数在实际问题中的应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义22(8分)考点:列表法与树状图法2867872分析:(1)可用列表法列举出所有情况,看两球上的数字之和是偶数的情况占总情况的多少即可;(2)表演节目的同学数=学生总数相应概
29、率解答:解:(1)如下表:从上表可以看出,一次性共有20种可能结果,其中两数为偶数的共有8种将参加联欢会的某位同学即兴表演节目记为事件A,P(A)=P(两数和为偶数)=;(2)50=20(人),估计有20名同学即兴表演节目点评:用到的知识点为:部分的具体数目=总体数目部分相应概率23(8分)考点:切线的性质;勾股定理;圆周角定理;相似三角形的判定与性质2867872分析:(1)由于DE垂直平分AC,可得两个条件:DEAC,E是AC的中点;由得:DEC是直角,则DC是O的直径,若连接OE,则OEBE,且BOE=2C;欲求C的度数,只需求出EBO、C的比例关系即可;由知:在RtABC中,E是斜边A
30、C的中点,则BE=EC,即EBO=C,因此在RtEBO中,EBO和EOB互余,即3C=90,由此得解(2)根据AB、BC的长,利用勾股定理可求出斜边AC的长,由(1)知:E是AC的中点,即可得到EC的值;易证得DECABC,根据所得比例线段,即可求得直径CD的长,由此得解解答:解:(1)DE垂直平分AC,DEC=90,DC为DEC外接圆的直径,DC的中点O即为圆心;连接OE,又知BE是圆O的切线,EBO+BOE=90;在RtABC中,E是斜边AC的中点,BE=EC,EBC=C;又OE=OC,BOE=2C,EBC+BOE=90,C+2C=90,C=30(2)在RtABC中,AC=,EC=AC=,
31、ABC=DEC=90,C=C,ABCDEC,DC=,DEC外接圆半径为点评:此题主要考查了直角三角形的性质、切线的性质以及相似三角形的判定和性质,难度适中24(10分)考点:二次函数综合题;待定系数法求二次函数解析式2867872专题:分类讨论分析:(1)设出抛物线的表达式为y=ax2+bx+c,由于抛物线经过A(1,0),B(3,0),C(0,1)三点,把三点代入表达式,联立解方程组,求出a、b、c(2)要分类讨论AB是边还是对角线两种情况,AB为边时,只要PQAB且PQ=AB=4即可,进而求出P点坐标,当AB为对角线时,只要线段PQ与线段AB互相平分即可,进而求出P点坐标解答:解:(1)设
32、该抛物线的表达式为y=ax2+bx+c根据题意,得:,解之得,所求抛物线的表达式为y=x2x1(2)AB为边时,只要PQAB且PQ=AB=4即可又知点Q在y轴上,点P的横坐标为4或4,这时符合条件的点P有两个,分别记为P1,P2而当x=4时,y=;当x=4时,y=7,此时P1(4,)、P2(4,7)当AB为对角线时,只要线段PQ与线段AB互相平分即可,又知点Q在y轴上,Q点横坐标为0,且线段AB中点的横坐标为1,由中点坐标公式,得点P的横坐标为2,这时符合条件的P只有一个记为P3而且当x=2时y=1,此时P3(2,1),综上,满足条件的P为P1(4,)、P2(4,7)、P3(2,1)点评:本题
33、是二次函数的综合题,涉及到二次函数解析式的确定,分类讨论的思想,此题不是很难,但是做题时要考虑周全25(12分)考点:直角梯形;待定系数法求一次函数解析式;矩形的性质2867872专题:综合题;压轴题分析:(1)矩形的对角线把矩形分成面积相等的两部分(2)连接AC,BD中心点位P,过P点的直线分矩形为相等的两部分(3)假如存在,过点D的直线只要作DAOB与点A,求出P点的坐标,设直线PH的表达式为y=kx+b,解出点H的坐标,求出斜率k和b若k和b存在,直线就存在解答:解:(1)如图(2)如图连接AC、BD交于P则P为矩形对称中心作直线MP,直线MP即为所求(3)如图存在直线l,过点D的直线作
34、DAOB于点A,则点P(4,2)为矩形ABCD的对称中心,过点P的直线只要平分DOA的面积即可,易知,在OD边上必存在点H使得PH将DOA面积平分从而,直线PH平分梯形OBCD的面积,即直线PH为所求直线l设直线PH的表达式为y=kx+b且点P(4,2),2=4k+b即b=24k,y=kx+24k,直线OD的表达式为y=2x,解之点H的坐标为(x=,y=)把x=2代入直线PH的解析式y=kx+24k,得y=22k,PH与线段AD的交点F(2,22k),022k4,1k1SDHF=(42+2k)(2)=24,解之,得k=(k=舍去)b=82,直线l的表达式为y=点评:本题主要考查矩形的性质,前两问还是比较容易,但是最后一问比较麻烦,容易出错,做的时候要认真
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100