1、2015年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1(3分)计算(1)0的结果为()A1B1C0D无意义2(3分)2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A3106B3105C0.3106D301043(3分)如图所示的几何体的左视图为()ABCD4(3分)下列运算正确的是()A(2a2)3=6a6Ba2b23ab3=3a2b5C+=1D=15(3分)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架A
2、BCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A四边形ABCD由矩形变为平行四边形BBD的长度增大C四边形ABCD的面积不变D四边形ABCD的周长不变6(3分)已知抛物线y=ax2+bx+c(a0)过(2,0),(2,3)两点,那么抛物线的对称轴()A只能是x=1B可能是y轴C可能在y轴右侧且在直线x=2的左侧D可能在y轴左侧且在直线x=2的右侧二、填空题(本大题共8小题,每小题3分,共24分)7(3分)一个角的度数为20,则它的补角的度数为 8(3分)不等式组的解集是 9(3分)如图,OP平分MON,PEOM于E,PFON于F,OA=
3、OB,则图中有 对全等三角形10(3分)如图,点A,B,C在O上,CO的延长线交AB于点D,A=50,B=30,则ADC的度数为 11(3分)已知一元二次方程x24x3=0的两根为m,n,则m2mn+n2= 12(3分)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 13(3分)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,CBD=40,则点B到CD的距离为 cm(参考数据sin200.342,cos200.940,sin400.643,cos400.766,结果精确到0.1cm,
4、可用科学计算器)14(3分)如图,在ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,AOC=60,则当PAB为直角三角形时,AP的长为 三、(本大题共4小题,每小题6分,共24分)15(6分)先化简,再求值:2a(a+2b)(a+2b)2,其中a=1,b=16(6分)如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2)(1)求对称中心的坐标(2)写出顶点B,C,B1,C1的坐标17(6分)O为ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将ABC分成面积相等的两部
5、分(保留作图痕迹,不写作法)(1)如图1,AC=BC;(2)如图2,直线l与O相切于点P,且lBC18(6分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个(1)先从袋子中取出m(m1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件 随机事件m的值 (2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值四、(本大题共4小题,每小题8分,共32分)19(8分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明
6、一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图根据以上信息解答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 (2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20(8分)(1)如图1,纸片ABCD中,AD=5,SABCD=15,过点A作AEBC,垂足为E,沿AE剪下ABE,将它平移至DCE的位置,拼成四边形AEED,则四边形AEED的形状为 A平行四边形 B菱形 C矩形 D正方形(2)如图2,在(1)中的四边形纸片
7、AEED中,在EE上取一点F,使EF=4,剪下AEF,将它平移至DEF的位置,拼成四边形AFFD求证:四边形AFFD是菱形求四边形AFFD的两条对角线的长21(8分)如图,已知直线y=ax+b与双曲线y=(x0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明)22(8分)甲、乙两人在100米直道AB上练习
8、匀速往返跑,若甲、乙分别在A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0t200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0t200)(2)根据(1)中所画图象,完成下列表格:两人相遇次数(单位:次)1234n两人所跑路程之和(单位:m)100300 (3)直接写出甲、乙两人分别在第一个100m内,t与s的函数解析式,并指出自变量t的取值范围求甲、乙第6次相遇时t的值五、(本大题共10分)23(10分)如图,已知二次函数L1:y=
9、ax22ax+a+3(a0)和二次函数L2:y=a(x+1)2+1(a0)图象的顶点分别为M,N,与y轴分别交于点E,F(1)函数y=ax22ax+a+3(a0)的最小值为 ,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是 (2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明)(3)若二次函数L2的图象与x轴的右交点为A(m,0),当AMN为等腰三角形时,求方程a(x+1)2+1=0的解六、(本大题共12分)24(12分)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是ABC的中线,AFBE,垂足为P,像A
10、BC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c特例探索(1)如图1,当ABE=45,c=2时,a= ,b= 如图2,当ABE=30,c=4时,a= ,b= 归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式拓展应用(3)如图4,在ABCD中,点E、F、G分别是AD,BC,CD的中点,BEEG,AD=2,AB=3,求AF的长2015年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1(3分)计算(1)0的结果为()A1B1C0D无意义【考点】
11、6E:零指数幂菁优网版权所有【分析】根据零指数幂的运算方法:a0=1(a0),求出(1)0的结果为多少即可【解答】解:(1)0=1,(1)0的结果为1故选:A【点评】此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a0);(2)0012(3分)2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A3106B3105C0.3106D30104【考点】1I:科学记数法表示较大的数菁优网版权所有【分析】科学记数法的表示形式为a10n的形式,其中1|a|10
12、,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:将300000用科学记数法表示为:3105故选:B【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3(3分)如图所示的几何体的左视图为()ABCD【考点】U2:简单组合体的三视图菁优网版权所有【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中【解答】解:从左面看易得左视图为:故选:D【点评】本题考查了三视图的知识,左视图
13、是从物体的左面看得到的视图4(3分)下列运算正确的是()A(2a2)3=6a6Ba2b23ab3=3a2b5C+=1D=1【考点】47:幂的乘方与积的乘方;49:单项式乘单项式;6A:分式的乘除法;6B:分式的加减法菁优网版权所有【专题】11:计算题【分析】A、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式变形后,利用同分母分式的减法法则计算得到结果,即可做出判断;D、原式约分得到结果,即可做出判断【解答】解:A、原式=8a6,错误;B、原式=3a3b5,错误;C、原式=1,正确;D、原式=,错误,故选:C【点
14、评】此题考查了分式的加减法,幂的乘方与积的乘方,单项式乘单项式,以及分式的乘除法,熟练掌握运算法则是解本题的关键5(3分)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A四边形ABCD由矩形变为平行四边形BBD的长度增大C四边形ABCD的面积不变D四边形ABCD的周长不变【考点】L5:平行四边形的性质;LB:矩形的性质菁优网版权所有【分析】由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变
15、成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了【解答】解:矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,AD=BC,AB=DC,四边形变成平行四边形,故A正确;BD的长度增加,故B正确;拉成平行四边形后,高变小了,但底边没变,面积变小了,故C错误;四边形的每条边的长度没变,周长没变,故D正确,故选:C【点评】本题主要考查了矩形的性质和平行四边形的性质,弄清图形变化后的变量和不变量是解答此题的关键6(3分)已知抛物线y=ax2+bx+c(a0)过(2,0),(2,3)两点,那么抛物线的对
16、称轴()A只能是x=1B可能是y轴C可能在y轴右侧且在直线x=2的左侧D可能在y轴左侧且在直线x=2的右侧【考点】H3:二次函数的性质菁优网版权所有【专题】16:压轴题【分析】根据题意,将(2,0),(2,3)代入可得两个方程,解出可作判定抛物线对称轴的位置【解答】解:抛物线y=ax2+bx+c(a0)过(2,0),(2,3)两点,0=4a2b+c,3=4a+2b+c,解得b=,c=4a,y=ax2+x+4a的对称轴是直线x=0,在y轴的左侧,其对称轴可能在x=2的左侧,也可能在x=2的右侧,所以可能在y轴左侧且在直线x=2的右侧,是正确的;故选:D【点评】本题考查了二次函数的性质,根据点坐标
17、代入列方程是解题的关键二、填空题(本大题共8小题,每小题3分,共24分)7(3分)一个角的度数为20,则它的补角的度数为160【考点】IL:余角和补角菁优网版权所有【分析】根据互为补角的两个角的和等于180列式进行计算即可得解【解答】解:18020=160故答案为:160【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于1808(3分)不等式组的解集是3x2【考点】CB:解一元一次不等式组菁优网版权所有【专题】11:计算题【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可【解答】解:,由得:x2,由得:x3,则不等式组的解集为3x2故答案为:3x2【点评】此题考查
18、了解一元一次不等式组,熟练掌握运算法则是解本题的关键9(3分)如图,OP平分MON,PEOM于E,PFON于F,OA=OB,则图中有3对全等三角形【考点】KB:全等三角形的判定;KF:角平分线的性质菁优网版权所有【分析】由OP平分MON,PEOM于E,PFON于F,得到PE=PF,1=2,证得AOPBOP,再根据AOPBOP,得出AP=BP,于是证得AOPBOP,和RtAOPRtBOP【解答】解:OP平分MON,PEOM于E,PFON于F,PE=PF,1=2,在AOP与BOP中,AOPBOP,AP=BP,在EOP与FOP中,EOPFOP,在RtAEP与RtBFP中,RtAEPRtBFP,图中有
19、3对全等三角形,故答案为:3【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键10(3分)如图,点A,B,C在O上,CO的延长线交AB于点D,A=50,B=30,则ADC的度数为110【考点】M5:圆周角定理菁优网版权所有【分析】根据圆周角定理求得BOC=100,进而根据三角形的外角的性质求得BDC=70,然后根据邻补角求得ADC的度数【解答】解:A=50,BOC=2A=100,B=30,BOC=B+BDC,BDC=BOCB=10030=70,ADC=180BDC=110,故答案为110【点评】本题考查了圆心角和圆周角的关系及三角形外角的性质,圆
20、心角和圆周角的关系是解题的关键11(3分)已知一元二次方程x24x3=0的两根为m,n,则m2mn+n2=25【考点】AB:根与系数的关系菁优网版权所有【分析】由m与n为已知方程的解,利用根与系数的关系求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值【解答】解:m,n是一元二次方程x24x3=0的两个根,m+n=4,mn=3,则m2mn+n2=(m+n)23mn=16+9=25故答案为:25【点评】此题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法12(3分)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这
21、两组数据合并为一组数据,则这组新数据的中位数为6【考点】W1:算术平均数;W4:中位数菁优网版权所有【分析】首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可【解答】解:两组数据:3,a,2b,5与a,6,b的平均数都是6,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6故答案为6【点评】本题考查平均数和中位数平均数是指在一组数据中所有数据之和再除以数据的个数一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大
22、到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数13(3分)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,CBD=40,则点B到CD的距离为14.1cm(参考数据sin200.342,cos200.940,sin400.643,cos400.766,结果精确到0.1cm,可用科学计算器)【考点】T8:解直角三角形的应用菁优网版权所有【分析】作BECD于E,根据等腰三角形的性质和CBD=40,求出CBE的度数,根据余弦的
23、定义求出BE的长【解答】解:如图2,作BECD于E,BC=BD,CBD=40,CBE=20,在RtCBE中,cosCBE=,BE=BCcosCBE=150.940=14.1cm故答案为:14.1【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,作出合适的辅助线构造直角三角形是解题的重要环节14(3分)如图,在ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,AOC=60,则当PAB为直角三角形时,AP的长为2或2或2【考点】KO:含30度角的直角三角形;KP:直角三角形斜边上的中线;KQ:勾股定理菁优网版权所有【专题】16:压轴题;32:分类讨论【分析】
24、利用分类讨论,当ABP=90时,如图2,由对顶角的性质可得AOC=BOP=60,易得BPO=30,易得BP的长,利用勾股定理可得AP的长;当APB=90时,分两种情况讨论,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得BOP为等边三角形,利用锐角三角函数可得AP的长;易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半可得结论【解答】解:当APB=90时(如图1),AO=BO,PO=BO,AOC=60,BOP=60,BOP为等边三角形,AB=BC=4,AP=ABsin60=4=2;当ABP=90时(如图2),AOC=BOP=60
25、,BPO=30,BP=2,在直角三角形ABP中,AP=2,情况二:如图3,AO=BO,APB=90,PO=AO,AOC=60,AOP为等边三角形,AP=AO=2,故答案为:2或2或2【点评】本题主要考查了勾股定理,含30直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键三、(本大题共4小题,每小题6分,共24分)15(6分)先化简,再求值:2a(a+2b)(a+2b)2,其中a=1,b=【考点】4J:整式的混合运算化简求值菁优网版权所有【专题】11:计算题【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用完全平方公式化简,去括号合并得到最简结果,把a与b的值代入
26、计算即可求出值【解答】解:原式=2a2+4aba24ab4b2=a24b2,当a=1,b=时,原式=112=11【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键16(6分)如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2)(1)求对称中心的坐标(2)写出顶点B,C,B1,C1的坐标【考点】D5:坐标与图形性质;R4:中心对称菁优网版权所有【分析】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正
27、方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可【解答】解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,D1,D的坐标分别是(0,3),(0,2),对称中心的坐标是(0,2.5)(2)A,D的坐标分别是(0,4),(0,2),正方形ABCD与正方形A1B1C1D1的边长都是:42=2,B,C的坐标分别是(2,4),(2,2),A1D1=2,D1的坐标是(0,3),A1的坐标是(0,1),B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是
28、(2,4),(2,2),(2,1),(2,3)【点评】(1)此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分(2)此题还考查了坐标与图形的性质的应用,要熟练掌握,解答此题的关键是要明确点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号17(6分)O为ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦
29、,使这条弦将ABC分成面积相等的两部分(保留作图痕迹,不写作法)(1)如图1,AC=BC;(2)如图2,直线l与O相切于点P,且lBC【考点】MA:三角形的外接圆与外心;MC:切线的性质;N3:作图复杂作图菁优网版权所有【专题】13:作图题【分析】(1)过点C作直径CD,由于AC=BC,=,根据垂径定理的推理得CD垂直平分AB,所以CD将ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与O相切于点P,根据切线的性质得OPl,而lBC,则PEBC,根据垂径定理得BE=CE,所以弦AE将ABC分成面积相等的两部分【解答】解:(1)如图1,直径CD为所求;(
30、2)如图2,弦AD为所求【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了切线的性质18(6分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个(1)先从袋子中取出m(m1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件 随机事件m的值42,3 (2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值【考点】X1:随机事件;
31、X4:概率公式菁优网版权所有【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2,3(2)根据题意得:=,解得:m=2,所以m的值为2【点评】本题考查的是概率的求法如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=四、(本大题共4小题,每小题8分,共32分)19(8分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出
32、问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图根据以上信息解答下列问题:(1)回收的问卷数为120份,“严加干涉”部分对应扇形的圆心角度数为30(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图菁优网版权所有【分析】(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以3
33、60即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果【解答】解:(1)回收的问卷数为:3025%=120(份),“严加干涉”部分对应扇形的圆心角度数为:360=30故答案为:120,30;(2)“稍加询问”的问卷数为:120(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人【点评】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息
34、是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小也考查了利用样本估计总体20(8分)(1)如图1,纸片ABCD中,AD=5,SABCD=15,过点A作AEBC,垂足为E,沿AE剪下ABE,将它平移至DCE的位置,拼成四边形AEED,则四边形AEED的形状为CA平行四边形 B菱形 C矩形 D正方形(2)如图2,在(1)中的四边形纸片AEED中,在EE上取一点F,使EF=4,剪下AEF,将它平移至DEF的位置,拼成四边形AFFD求证:四边形AFFD是菱形求四边形AFFD的两条对角线的长【考点】L5:平行四边形的性质;LA:菱形的判定与性质;LC:矩形
35、的判定;PC:图形的剪拼;Q2:平移的性质菁优网版权所有【专题】14:证明题【分析】(1)根据矩形的判定,可得答案;(2)根据菱形的判定,可得答案;根据勾股定理,可得答案【解答】解:(1)如图1,纸片ABCD中,AD=5,SABCD=15,过点A作AEBC,垂足为E,沿AE剪下ABE,将它平移至DCE的位置,拼成四边形AEED,则四边形AEED的形状为矩形,故选:C;(2)证明:纸片ABCD中,AD=5,SABCD=15,过点A作AEBC,垂足为E,AE=3如图2:,AEF,将它平移至DEF,AFDF,AF=DF,四边形AFFD是平行四边形在RtAEF中,由勾股定理,得AF=5,AF=AD=5
36、,四边形AFFD是菱形;连接AF,DF,如图3:在RtDEF中EF=FFEF=54=1,DE=3,DF=,在RtAEF中EF=EF+FF=4+5=9,AE=3,AF=3【点评】本题考查了图形的剪拼,利用了矩形的判定,菱形的判定,勾股定理21(8分)如图,已知直线y=ax+b与双曲线y=(x0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标(3)结合(1),(2)中的结果,猜想并用等式表示x1
37、,x2,x0之间的关系(不要求证明)【考点】G8:反比例函数与一次函数的交点问题菁优网版权所有【分析】(1)先把A(1,3),B(3,y2)代入y=求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作ADy轴于D,AEx轴于E,BFx轴于F,BGy轴于G,AE、BG交于H,则ADBGx轴,AEBFy轴,得出=,=,根据题意得出=,=,从而求得B(,y1),然后根据k=xy得出x1y1=y1,求得x1=2,代入=,解得y1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0【解答】解:
38、(1)直线y=ax+b与双曲线y=(x0)交于A(1,3),k=13=3,y=,B(3,y2)在反比例函数的图象上,y2=1,B(3,1),直线y=ax+b经过A、B两点,解得,直线为y=x+4,令y=0,则x=4,P(4,O);(2)如图,作ADy轴于D,AEx轴于E,BFx轴于F,BGy轴于G,AE、BG交于H,则ADBGx轴,AEBFy轴,=,=,b=y1+1,AB=BP,=,=,B(,y1)A,B两点都是反比例函数图象上的点,x1y1=y1,解得x1=2,代入=,解得y1=2,A(2,2),B(4,1)(3)根据(1),(2)中的结果,猜想:x1,x2,x0之间的关系为x1+x2=x0
39、【点评】本题考查了待定系数法求解析式以及反比例函数和一次函数的交点问题,数形结合思想的运用是解题的关键22(8分)甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别在A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0t200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0t200)(2)根据(1)中所画图象,完成下列表格:两人相遇次数(单位:次)1234n两人所跑路程之和(单位:m)100300500700200n100(3)直接
40、写出甲、乙两人分别在第一个100m内,t与s的函数解析式,并指出自变量t的取值范围求甲、乙第6次相遇时t的值【考点】FH:一次函数的应用菁优网版权所有【分析】(1)根据甲跑100米所用的时间为1005=20(秒),画出图象即可;(2)根据甲和乙第一次相遇时,两人所跑路程之和为100米,甲和乙第二次相遇时,两人所跑路程之和为1002+100=300(米),甲和乙第三次相遇时,两人所跑路程之和为2002+100=500(米),甲和乙第四次相遇时,两人所跑路程之和为3002+100=700(米),找到规律即可解答;(3)根据路程、速度、时间之间的关系即可解答;(4)根据当甲和乙第6次相遇时,两人所跑
41、路程之和为5002+100=1100(米),根据题意得:5t+4t=1100,即可解答【解答】解:(1)如图:(2)甲和乙第一次相遇时,两人所跑路程之和为100米,甲和乙第二次相遇时,两人所跑路程之和为1002+100=300(米),甲和乙第三次相遇时,两人所跑路程之和为2002+100=500(米),甲和乙第四次相遇时,两人所跑路程之和为3002+100=700(米),甲和乙第n次相遇时,两人所跑路程之和为(n1)1002+100=200n100(米),故答案为:500,700,200n100;(3)s甲=5t(0t20),s乙=1004t(0t25)当甲和乙第6次相遇时,两人所跑路程之和为
42、5002+100=1100(米),根据题意得:5t+4t=1100,解得:t=【点评】本题考查了一次函数的应用,解决本题的关键是相遇问题,第一次相遇100米,以后每次走200米相遇一次,根据所走的路程可求解五、(本大题共10分)23(10分)如图,已知二次函数L1:y=ax22ax+a+3(a0)和二次函数L2:y=a(x+1)2+1(a0)图象的顶点分别为M,N,与y轴分别交于点E,F(1)函数y=ax22ax+a+3(a0)的最小值为3,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是1x1(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明)(3)若二次函数L2的图象与x轴的右交点为A(m,0),当AMN为等腰三角形时,求方程a(x+1)2+1=0的解【考点】HF:二次函数综合题菁优网版权所有【专题】16:压轴题【分析】(1)把二次函数L1:y=ax22ax+a+3化成顶点式,即可求得最小值
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100