1、 绝密启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)若集合A=x|2x1,B=x|x3,则AB=(A)x|2x1 (B)x|2x3(C)x|1x1 (D)x|1x3(2)若复数(1i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(,1) (B)(,1)(C)(1,+) (D)(1,+)(3)执行
2、如图所示的程序框图,输出的s值为(A)2 (B) (C) (D)(4)若x,y满足 x3, x + y 2,则x + 2y的最大值为 yx,(A)1 (B)3 (C)5 (D)9(5)已知函数,则(A)是奇函数,且在R上是增函数 (B)是偶函数,且在R上是增函数(C)是奇函数,且在R上是减函数 (D)是偶函数,且在R上是减函数(6)设m,n为非零向量,则“存在负数,使得”是“”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)3(B)2(C)2(D)2(8)根据有关资料,围棋状态空间复杂
3、度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg30.48)(A)1033 (B)1053 (C)1073 (D)1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。(9)若双曲线的离心率为,则实数m=_.(10)若等差数列和等比数列满足a1=b1=1,a4=b4=8,则=_.(11)在极坐标系中,点A在圆上,点P的坐标为(1,0),则|AP|的最小值为 .(12)在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称。若,则= .(13)能够说明“设a,b,c是任意实数.若abc,则
4、a+bc”是假命题的一组整数a,b,c的值依次为_.(14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3。记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_。记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_。三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程。(15)(本小题13分)在ABC中, =60,c= a.()求sinC的值;()若a=7,求ABC的面积.
5、(16)(本小题14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD/平面MAC,PA=PD=,AB=4.(I)求证:M为PB的中点;(II)求二面角B-PD-A的大小;(III)求直线MC与平面BDP所成角的正炫值。(17)(本小题13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药。一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“* ”表示服药者,“+”表示为服药者.()从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;()从图中A,B,C,D,四人中随机选
6、出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();()试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)(18)(本小题14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.()求抛物线C的方程,并求其焦点坐标和准线方程;()求证:A为线段BM的中点.(19)(本小题13分) 已知函数f(x)=excosxx.()求曲线y= f(x)在点(0,f(0)处的切线方程;()求函数f(x)在区间0,上的最大值和最
7、小值.(20)(本小题13分)设an和bn是两个等差数列,记cn=maxb1a1n,b2a2n,bnann(n=1,2,3,),其中maxx1,x2,xs表示x1,x2,xs这s个数中最大的数()若an=n,bn=2n1,求c1,c2,c3的值,并证明cn是等差数列;()证明:或者对任意正数M,存在正整数m,当nm时,;或者存在正整数m,使得cm,cm+1,cm+2,是等差数列2017年普通高等学校招生全国统一考试数 学(理)(北京卷)答案一、(1)A(2)B(3)C(4)D(5)A(6)A(7)B(8)D二、(9)2(10)1(11)1(12)(13)(答案不唯一)(14)Q1p2三、(15
8、)(共13分)解:()在ABC中,因为,所以由正弦定理得.()因为,所以.由余弦定理得,解得或(舍).所以ABC的面积.(16)(共14分)解:(I)设交点为,连接.因为平面,平面平面,所以.因为是正方形,所以为的中点,所以为的中点.(II)取的中点,连接,.因为,所以.又因为平面平面,且平面,所以平面.因为平面,所以.因为是正方形,所以.如图建立空间直角坐标系,则,.设平面的法向量为,则,即.令,则,.于是.平面的法向量为,所以.由题知二面角为锐角,所以它的大小为.(III)由题意知,.设直线与平面所成角为,则.所以直线与平面所成角的正弦值为.(17)(共13分)解:()由图知,在服药的50
9、名患者中,指标的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标的值小于60的概率为.()由图知,A,B,C,D四人中,指标的值大于1.7的有2人:A和C.所以的所有可能取值为0,1,2.所以的分布列为012 故的期望.()在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.(18)(共14分)解:()由抛物线C:过点P(1,1),得.所以抛物线C的方程为.抛物线C的焦点坐标为(,0),准线方程为.()由题意,设直线l的方程为(),l与抛物线C的交点为,.由,得.则,.因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.直线ON的方程为,点B的坐标为.因为,所以.故A为线段BM的中点.(19)(共13分)解:()因为,所以.又因为,所以曲线在点处的切线方程为.()设,则.当时,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.(20)(共13分)解:(),.当时,所以关于单调递减.所以.所以对任意,于是,所以是等差数列.()设数列和的公差分别为,则.所以 当时,取正整数,则当时,因此.此时,是等差数列.当时,对任意,此时,是等差数列.当时,当时,有.所以 对任意正数,取正整数,故当时,.11
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100