1、2020 年全国统一高考数学试卷(理科)(新课标)年全国统一高考数学试卷(理科)(新课标)一、选择题(共 12 小题).1若 z1+i,则|z22z|()A0 B1 C D2 2设集合 Ax|x240,Bx|2x+a0,且 ABx|2x1,则 a()A4 B2 C2 D4 3埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A B C D 4已知 A 为抛物线 C:y22px(p0)上一点,点 A 到 C 的焦点的距离为 12,到 y 轴的距离为 9,则 p()
2、A2 B3 C6 D9 5某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x(单位:)的关系,在 20 个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i1,2,20)得到下面的散点图:由此散点图,在 10至 40之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是()Aya+bx Bya+bx2 Cya+bex Dya+blnx 6函数 f(x)x42x3的图象在点(1,f(1)处的切线方程为()Ay2x1 By2x+1 Cy2x3 Dy2x+1 7设函数 f(x)cos(x+)在,的图象大致如图,则 f(x)的最小正周期为()A B C
3、D 8(x+)(x+y)5的展开式中 x3y3的系数为()A5 B10 C15 D20 9已知(0,),且 3cos28cos5,则 sin()A B C D 10已知 A,B,C 为球 O 的球面上的三个点,O1为ABC 的外接圆若O1的面积为 4,ABBCACOO1,则球 O 的表面积为()A64 B48 C36 D32 11已知M:x2+y22x2y20,直线 1:2x+y+20,P 为 l 上的动点过点 P 作M 的切线 PA,PB,切点为 A,B,当|PM|AB|最小时,直线 AB 的方程为()A2xy10 B2x+y10 C2xy+10 D2x+y+10 12若 2a+log2a4
4、b+2log4b,则()Aa2b Ba2b Cab2 Dab2 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13若 x,y 满足约束条件则 zx+7y 的最大值为 14设,为单位向量,且|+|1,则|15已知 F 为双曲线 C:1(a0,b0)的右焦点,A 为 C 的右顶点,B 为 C 上的点,且 BF 垂直于 x 轴若 AB 的斜率为 3,则 C 的离心率为 16如图,在三棱锥 PABC 的平面展开图中,AC1,ABAD,ABAC,ABAD,CAE30,则cosFCB 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必
5、须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。17设an是公比不为 1 的等比数列,a1为 a2,a3的等差中项(1)求an的公比;(2)若 a1l,求数列nan的前 n 项和 18如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AEADABC 是底面的内接正三角形,P 为 DO 上一点,PODO(1)证明:PA平面 PBC;(2)求二面角 BPCE 的余弦值 19甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰
6、;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束 经抽签,甲、乙首先比赛,丙轮空设每场比赛双方获胜的概率都为(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率 20已知 A,B 分别为椭圆 E:+y21(a1)的左、右顶点,G 为 E 的上顶点,8P 为直线 x6上的动点,PA 与 E 的另一交点为 C,PB 与 E 的另一交点为 D(1)求 E 的方程;(2)证明:直线 CD 过定点 21已知函数 f(x)ex+ax2x(1)当 a1 时,讨论 f(x)的单调性;(2)当 x0 时,f(x)x3+1,求 a 的取值范围(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。选修 4-4:坐标系与参数方程 22在直角坐标系 xOy 中,曲线 C1的参数方程为(t 为参数)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C2的极坐标方程为 4cos16sin+30(1)当 k1 时,C1是什么曲线?(2)当 k4 时,求 C1与 C2的公共点的直角坐标 选修 4-5:不等式选讲 23已知函数 f(x)|3x+1|2|x1|(1)画出 yf(x)的图象;(2)求不等式 f(x)f(x+1)的解集