ImageVerifierCode 换一换
格式:PPTX , 页数:142 ,大小:3MB ,
资源ID:5004567      下载积分:20 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5004567.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(经济数学导数公开课一等奖优质课大赛微课获奖课件.pptx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

经济数学导数公开课一等奖优质课大赛微课获奖课件.pptx

1、calculus3.1 导数概念导数概念3.2 求导基本公式与求导运算法则求导基本公式与求导运算法则3.3 微分微分3.4 高阶导数和高阶微分高阶导数和高阶微分第三章第三章 导数与微分导数与微分3.5 边际与弹性边际与弹性本章计划学时本章计划学时:14学时学时1微积分 第三章导数与微分第1页第1页calculus3.1 导数概念导数概念引例引例1、变速直线运动瞬时速度、变速直线运动瞬时速度一、引例一、引例2微积分 第三章导数与微分第2页第2页calculus(1)当物体作匀速运动时(2)当物体作变速运动时3微积分 第三章导数与微分第3页第3页calculus引例引例2 平面曲线切线斜率平面曲线

2、切线斜率 在点求曲线L:处切线斜率。割线 MN 斜率为:4微积分 第三章导数与微分第4页第4页calculus割线 MN 极限位置 MT 称为曲线 L 在点 M 处切线。切线 MT 斜率为:当时,5微积分 第三章导数与微分第5页第5页calculus二、导数定义二、导数定义6微积分 第三章导数与微分第6页第6页calculus7微积分 第三章导数与微分第7页第7页calculus8微积分 第三章导数与微分第8页第8页calculus9微积分 第三章导数与微分第9页第9页calculus10微积分 第三章导数与微分第10页第10页calculus11微积分 第三章导数与微分第11页第11页cal

3、culus三、导数几何意义三、导数几何意义12微积分 第三章导数与微分第12页第12页calculus四、单边(侧)导数四、单边(侧)导数13微积分 第三章导数与微分第13页第13页calculus14微积分 第三章导数与微分第14页第14页calculus同样单边导数定义式也可简化为:15微积分 第三章导数与微分第15页第15页calculus例.求函数在在处导数.解解因此因此,函数函数在在处不可导处不可导.思考思考16微积分 第三章导数与微分第16页第16页calculus五、可导性与连续性关系五、可导性与连续性关系若函数若函数在在处可导处可导,则必连续则必连续.事实上事实上,因因在在处可

4、导处可导,即即定理定理2.1因此因此,函数函数在在处连续处连续.17微积分 第三章导数与微分第17页第17页calculus例例.求函数求函数在在处导数处导数.解解因此因此,函数函数在在处不可导处不可导.0问题:连续是否一定可导?问题:连续是否一定可导?18微积分 第三章导数与微分第18页第18页calculus19微积分 第三章导数与微分第19页第19页calculus1-120微积分 第三章导数与微分第20页第20页calculus函数在其可导点处一定连续函数在其可导点处一定连续函数在其不连续点处一定不可导函数在其不连续点处一定不可导函数在其连续点处不一定可导函数在其连续点处不一定可导结论

5、结论21微积分 第三章导数与微分第21页第21页calculus六、用定义求导数举例六、用定义求导数举例同样单边导数定义式也可简化为:22微积分 第三章导数与微分第22页第22页calculus例例1.求函数求函数(常数常数)导数导数.解解常数导数等于零常数导数等于零例例2.求函数求函数导数导数.解解23微积分 第三章导数与微分第23页第23页calculus例例3.求指数函数求指数函数导数导数.解解24微积分 第三章导数与微分第24页第24页calculus例例4.设设求求解解尤其地尤其地,25微积分 第三章导数与微分第25页第25页calculus例例5.设设求求解解正弦函数导数等于余弦函

6、数正弦函数导数等于余弦函数.类似得类似得,余弦函数导数等于负正弦函数余弦函数导数等于负正弦函数.26微积分 第三章导数与微分第26页第26页calculus注:分段函数分段点导数必须用定义求注:分段函数分段点导数必须用定义求例例6.设函数设函数解解由于27微积分 第三章导数与微分第27页第27页calculus例例7.解解28微积分 第三章导数与微分第28页第28页calculus办法一:办法一:例例8.解解29微积分 第三章导数与微分第29页第29页calculus30微积分 第三章导数与微分第30页第30页calculus办法二:办法二:31微积分 第三章导数与微分第31页第31页calc

7、ulus32微积分 第三章导数与微分第32页第32页calculus解解例例9.33微积分 第三章导数与微分第33页第33页calculus由导数几何意义知,所求切线斜率为:所求切线方程为:即所求法线方程为:即解解例例11.34微积分 第三章导数与微分第34页第34页calculus3.2 求导基本公式与求导运算法则求导基本公式与求导运算法则一、四则运算求导法则一、四则运算求导法则35微积分 第三章导数与微分第35页第35页calculus证证:设则有故结论成立.推论推论:(C为常数)36微积分 第三章导数与微分第36页第36页calculus37微积分 第三章导数与微分第37页第37页cal

8、culus证毕证毕.38微积分 第三章导数与微分第38页第38页calculus例例1.解解39微积分 第三章导数与微分第39页第39页calculus解解:例例2.40微积分 第三章导数与微分第40页第40页calculus求解解例例3.41微积分 第三章导数与微分第41页第41页calculus例例4.解解42微积分 第三章导数与微分第42页第42页calculus解解例例5.43微积分 第三章导数与微分第43页第43页calculus惯用公式:惯用公式:44微积分 第三章导数与微分第44页第44页calculus二、反函数求导法则二、反函数求导法则45微积分 第三章导数与微分第45页第4

9、5页calculus46微积分 第三章导数与微分第46页第46页calculus解解例例5.47微积分 第三章导数与微分第47页第47页calculus解解例例6.48微积分 第三章导数与微分第48页第48页calculus三、基本导数公式三、基本导数公式49微积分 第三章导数与微分第49页第49页calculus50微积分 第三章导数与微分第50页第50页calculus51微积分 第三章导数与微分第51页第51页calculusGuess四、复合函数求导法则四、复合函数求导法则52微积分 第三章导数与微分第52页第52页calculus53微积分 第三章导数与微分第53页第53页calcu

10、lus54微积分 第三章导数与微分第54页第54页calculus法则法则5(连锁法则连锁法则)Outfunctioninnerfunction55微积分 第三章导数与微分第55页第55页calculus证证在点在点可导,可导,由由知由极限与无穷小关系知由极限与无穷小关系知于是于是56微积分 第三章导数与微分第56页第56页calculus即即57微积分 第三章导数与微分第57页第57页calculus解解.例例1 求下列函数导数58微积分 第三章导数与微分第58页第58页calculus更更简简明明过过程程59微积分 第三章导数与微分第59页第59页calculus解解例例2.更简明更简明过

11、程过程60微积分 第三章导数与微分第60页第60页calculus解解例例3.61微积分 第三章导数与微分第61页第61页calculus例例4.解解62微积分 第三章导数与微分第62页第62页calculus复合函数求导法则能够推广到多重复合情形复合函数求导法则能够推广到多重复合情形.设设则则或或63微积分 第三章导数与微分第63页第63页calculus例例.求解解64微积分 第三章导数与微分第64页第64页calculus更简明更简明过程过程65微积分 第三章导数与微分第65页第65页calculus例例求解解66微积分 第三章导数与微分第66页第66页calculus例例求解解67微积

12、分 第三章导数与微分第67页第67页calculus例例8 8解解68微积分 第三章导数与微分第68页第68页calculus形如,形如,函数称为函数称为显函数显函数.若若与与函数关系由方程函数关系由方程所拟定所拟定,称这类函数为称这类函数为隐函数隐函数.五、隐函数求导法五、隐函数求导法69微积分 第三章导数与微分第69页第69页calculus解解例例9 70微积分 第三章导数与微分第70页第70页calculus解解例例1071微积分 第三章导数与微分第71页第71页calculus解解例例1172微积分 第三章导数与微分第72页第72页calculus六、对数求导法六、对数求导法两类函数

13、2.有简便求有简便求73微积分 第三章导数与微分第73页第73页calculus对 x 求导两边取对数例例1274微积分 第三章导数与微分第74页第74页calculus75微积分 第三章导数与微分第75页第75页calculus例例13 求导数.解解 两边取对数,化为隐函数两边对 x 求导76微积分 第三章导数与微分第76页第76页calculus解法解法2 将函数化为复合函数77微积分 第三章导数与微分第77页第77页calculus例例12解解 两边取对数 对 x 求导78微积分 第三章导数与微分第78页第78页calculus79微积分 第三章导数与微分第79页第79页calculus

14、引例引例.一块正方形金属薄片受温度影响一块正方形金属薄片受温度影响,其边长由其边长由变到变到问此薄片问此薄片面积改变了多少面积改变了多少?面积改变量:面积改变量:一、微分引进一、微分引进3.3 微分微分80微积分 第三章导数与微分第80页第80页calculus81微积分 第三章导数与微分第81页第81页calculus二、微分定义二、微分定义82微积分 第三章导数与微分第82页第82页calculus证证(必要性必要性)83微积分 第三章导数与微分第83页第83页calculus(充足性充足性)设函数设函数在点在点处处可导可导,即即与与无关无关,是较是较高阶无穷小高阶无穷小.因此函数因此函数

15、在点在点处处可微可微.且且84微积分 第三章导数与微分第84页第84页calculus阐明阐明:时,因此时很小时,有近似公式与是等价无穷小,当故当85微积分 第三章导数与微分第85页第85页calculus86微积分 第三章导数与微分第86页第86页calculus87微积分 第三章导数与微分第87页第87页calculus注意:注意:88微积分 第三章导数与微分第88页第88页calculus三、基本微分公式与微分法则三、基本微分公式与微分法则依据依据可得基本初等函数微分公式:可得基本初等函数微分公式:89微积分 第三章导数与微分第89页第89页calculus微分法则微分法则:设设都可微,

16、都可微,则则90微积分 第三章导数与微分第90页第90页calculus微分法则微分法则:设设都可微,都可微,则则91微积分 第三章导数与微分第91页第91页calculus复合函数微分法则:复合函数微分法则:设设而而因此因此即微分形式不变性即微分形式不变性92微积分 第三章导数与微分第92页第92页calculus93微积分 第三章导数与微分第93页第93页calculus94微积分 第三章导数与微分第94页第94页calculus95微积分 第三章导数与微分第95页第95页calculus96微积分 第三章导数与微分第96页第96页calculus四、微分在近似计算中应用四、微分在近似计算

17、中应用由微分定义知由微分定义知,当当时时,因此因此,当当很小时很小时,有有近似公式近似公式:(1)即即(2)(3)97微积分 第三章导数与微分第97页第97页calculusLinear Approximations and Differentials98微积分 第三章导数与微分第98页第98页calculus解解:设取则近似值.例例求99微积分 第三章导数与微分第99页第99页calculus100微积分 第三章导数与微分第100页第100页calculus即在生产100单位产品基础上再多生产一单位产品,成本会增长2.96101微积分 第三章导数与微分第101页第101页calculus可证

18、可证,当当很小时很小时,有近似公式有近似公式:当当很小时很小时,(4)102微积分 第三章导数与微分第102页第102页calculus103微积分 第三章导数与微分第103页第103页calculus解解:近似值.例例.计算104微积分 第三章导数与微分第104页第104页calculus速度即加速度即引例引例:变速直线运动3.4 高阶导数高阶导数105微积分 第三章导数与微分第105页第105页calculus记作:或即二阶导数导数,叫做三阶导数,记作:或106微积分 第三章导数与微分第106页第106页calculus三阶导数导数,叫做三阶导数导数,叫做四阶导数四阶导数,记作:记作:或或

19、阶导数导数,叫做阶导数导数,叫做阶导数阶导数,记作:记作:或或函数函数有有阶导数,阶导数,也说函数也说函数为为阶可导阶可导。二阶及二阶以上导数统称为高阶导数。二阶及二阶以上导数统称为高阶导数。107微积分 第三章导数与微分第107页第107页calculus108微积分 第三章导数与微分第108页第108页calculus109微积分 第三章导数与微分第109页第109页calculus110微积分 第三章导数与微分第110页第110页calculus111微积分 第三章导数与微分第111页第111页calculus112微积分 第三章导数与微分第112页第112页calculus113微积分

20、 第三章导数与微分第113页第113页calculus114微积分 第三章导数与微分第114页第114页calculus115微积分 第三章导数与微分第115页第115页calculus由上面各阶导数能够得到116微积分 第三章导数与微分第116页第116页calculus二、高阶导数运算法则二、高阶导数运算法则都有 n 阶导数,则(C为常数)莱布尼兹莱布尼兹(Leibniz)公式公式及设函数117微积分 第三章导数与微分第117页第117页calculus例例.求解解:设则代入莱布尼兹公式,得118微积分 第三章导数与微分第118页第118页calculus119微积分 第三章导数与微分第1

21、19页第119页calculus以上这个公式称为莱布尼兹(Leibniz)公式,可用于求乘积高阶导数120微积分 第三章导数与微分第120页第120页calculus121微积分 第三章导数与微分第121页第121页calculus122微积分 第三章导数与微分第122页第122页calculus123微积分 第三章导数与微分第123页第123页calculus124微积分 第三章导数与微分第124页第124页calculus125微积分 第三章导数与微分第125页第125页calculus3.5 边际与弹性边际与弹性一、边际概念一、边际概念126微积分 第三章导数与微分第126页第126页c

22、alculus127微积分 第三章导数与微分第127页第127页calculus128微积分 第三章导数与微分第128页第128页calculus129微积分 第三章导数与微分第129页第129页calculus130微积分 第三章导数与微分第130页第130页calculus131微积分 第三章导数与微分第131页第131页calculus132微积分 第三章导数与微分第132页第132页calculus二、弹性函数二、弹性函数1、弹性概念、弹性概念弹性意义:弹性意义:133微积分 第三章导数与微分第133页第133页calculus134微积分 第三章导数与微分第134页第134页calc

23、ulus幂函数在任意点弹性不变称为不变弹性函数幂函数在任意点弹性不变称为不变弹性函数135微积分 第三章导数与微分第135页第135页calculus2、弹性经济应用、弹性经济应用(1)需求价格弹性需求价格弹性注意注意136微积分 第三章导数与微分第136页第136页calculus137微积分 第三章导数与微分第137页第137页calculus138微积分 第三章导数与微分第138页第138页calculus(2)供应价格弹性供应价格弹性139微积分 第三章导数与微分第139页第139页calculus(3)收益价格弹性收益价格弹性140微积分 第三章导数与微分第140页第140页calculus141微积分 第三章导数与微分第141页第141页calculus142微积分 第三章导数与微分第142页第142页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服