1、江苏省连云港市2018年中考数学真题试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1(2018年江苏省连云港市)8的相反数是()A8BC8D【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案【解答】解:8的相反数是8,故选:C【点评】此题主要考查了相反数,关键是掌握相反数的定义2(2018年江苏省连云港市)下列运算正确的是()Ax2x=xB2xy=xyCx2+x2=x4D(xl)2=x21【分析】根据整式的运算法则即可求出答案【解答】解:(B)原式=2xy,故B错误;(
2、C)原式=2x2,故C错误;(D)原式=x22x+1,故D错误;故选:A【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型3(2018年江苏省连云港市)地球上陆地的面积约为150 000 000km2把“150 000 000”用科学记数法表示为()A1.5108B1.5107C1.5109D1.5106【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【解答】解:150 000 000=1.51
3、08,故选:A【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4(2018年江苏省连云港市)一组数据2,1,2,5,3,2的众数是()A1B2C3D5【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故选:B【点评】此题考查了众数,众数是一组数据中出现次数最多的数5(2018年江苏省连云港市)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD【分析】根据概率的求法,找准两点:全
4、部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【解答】解:共6个数,大于3的有3个,P(大于3)=;故选:D【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=6(2018年江苏省连云港市)如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD【分析】根据从上面看得到的图形是俯视图,可得答案【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图7(2018年江苏省连云港市)已知学校航
5、模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=t2+24t+1则下列说法中正确的是()A点火后9s和点火后13s的升空高度相同B点火后24s火箭落于地面C点火后10s的升空高度为139mD火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h
6、=t2+24t+1=(t12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质8(2018年江苏省连云港市)如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),ABC=60,则k的值是()A5B4C3D2【分析】根据题意可以求得点B的坐标,从而可以求得k的值【解答】解:四边形ABCD是菱形,BA=BC,ACBD,ABC=60,ABC是等边三角形,点A(1,1),OA=,BO=,直线AC的解析式为y=x,直线BD的解析式为y=x,OB=,点B的坐
7、标为(,),点B在反比例函数y=的图象上,解得,k=3,故选:C【点评】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答二、填空题(本大题共8小题,毎小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9(2018年江苏省连云港市)使有意义的x的取值范围是x2【分析】当被开方数x2为非负数时,二次根式才有意义,列不等式求解【解答】解:根据二次根式的意义,得x20,解得x2【点评】主要考查了二次根式的意义和性质概念:式子(a0)叫二次根式性质:二次根式中的被开方数必须是非负数,否则二次根式无意义10(2018年江苏省连云
8、港市)分解因式:16x2=(4+x)(4x)【分析】16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可【解答】解:16x2=(4+x)(4x)【点评】本题考查利用平方差公式分解因式,熟记公式结构是解题的关键11(2018年江苏省连云港市)如图,ABC中,点D、E分別在AB、AC上,DEBC,AD:DB=1:2,则ADE与ABC的面积的比为1:9【分析】根据DEBC得到ADEABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解【解答】解:DEBC,ADEABC,AD:DB=1:2,AD:AB=1:3,SADE:SABC是1:9故答案
9、为:1:9【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键12(2018年江苏省连云港市)已知A(4,y1),B(1,y2)是反比例函数y=图象上的两个点,则y1与y2的大小关系为y1y2【分析】根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题【解答】解:反比例函数y=,40,在每个象限内,y随x的增大而增大,A(4,y1),B(1,y2)是反比例函数y=图象上的两个点,41,y1y2,故答案为:y1y2【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答13(
10、2018年江苏省连云港市)一个扇形的圆心角是120它的半径是3cm则扇形的弧长为2cm【分析】根据弧长公式可得结论【解答】解:根据题意,扇形的弧长为=2,故答案为:2【点评】本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键14(2018年江苏省连云港市)如图,AB是O的弦,点C在过点B的切线上,且OCOA,OC交AB于点P,已知OAB=22,则OCB=44【分析】首先连接OB,由点C在过点B的切线上,且OCOA,根据等角的余角相等,易证得CBP=CPB,利用等腰三角形的性质解答即可【解答】解:连接OB,BC是O的切线,OBBC,OBA+CBP=90,OCOA,A+APO=90,OA=OB,
11、OAB=22,OAB=OBA=22,APO=CBP=68,APO=CPB,CPB=ABP=68,OCB=1806868=44,故答案为:44【点评】此题考查了切线的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用15(2018年江苏省连云港市)如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,O经过A,B两点,已知AB=2,则的值为【分析】由图形可知:OAB是等腰直角三角形,AB=2,可得A,B两点坐标,利用待定系数法可求k和b的值,进而得到答案【解答】解:由图形可知:OAB是等腰直角三角形,OA=OBAB=2,OA2+OB2=AB2OA=OB=A点
12、坐标是(,0),B点坐标是(0,)一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点将A,B两点坐标带入y=kx+b,得k=1,b=故答案为:【点评】本题主要考查图形的分析运用和待定系数法求解析,找出A,B两点的坐标对解题是关键之举16(2018年江苏省连云港市)如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF已知AGGF,AC=,则AB的长为2【分析】如图,连接BD由ADGGCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在RtGCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD四边形ABC
13、D是矩形,ADC=DCB=90,AC=BD=,CG=DG,CF=FB,GF=BD=,AGFG,AGF=90,DAG+AGD=90,AGD+CGF=90,DAG=CGF,ADGGCF,设CF=BF=a,CG=DG=b,=,=,b2=2a2,a0b0,b=a,在RtGCF中,3a2=,a=,AB=2b=2故答案为2【点评】本题考查中点四边形、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17(2018年江苏省连云港市)计算:
14、(2)2+20180【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可【解答】解:原式=4+16=1【点评】此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质18(2018年江苏省连云港市)解方程:=0【分析】根据灯饰的性质,可得整式方程,根据解整式方程,可得答案【解答】解:两边乘x(x1),得3x2(x1)=0,解得x=2,经检验:x=2是原分式方程的解【点评】本题考查了解分式方程,利用等式的性质将分式方程转化成整式方程是解题关键,要检验方程的根19(2018年江苏省连云港市)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案【解答】
15、解:,解不等式,得x2,解不等式,得x3,不等式,不等式的解集在数轴上表示,如图,原不等式组的解集为3x2【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键20(2018年江苏省连云港市)随着我国经济社会的发展,人民对于美好生活的追求越来越高某社区为了了解家庭对于文化教育的消费悄况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表请你根据统计图表提供的信息,解答下列问题:(1)本次被调査的家庭有150户,表中 m=42;(2)本次调查数据的中位数出现在B组扇形统计图中,D组所在扇形的圆心角是36度;(3)这个社区有2
16、500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?组別家庭年文化教育消费金额x(元)户数Ax500036B5000x10000mC10000x1500027D15000x2000015Ex2000030【分析】(1)依据A组或E组数据,即可得到样本容量,进而得出m的值;(2)依据中位数为第75和76个数据的平均数,即可得到中位数的位置,利用圆心角计算公式,即可得到D组所在扇形的圆心角;(3)依据家庭年文化教育消费10000元以上的家庭所占的比例,即可得到家庭年文化教育消费10000元以上的家庭的数量【解答】解:(1)样本容量为:3624%=150,m=1503627153
17、0=42,故答案为:150,42;(2)中位数为第75和76个数据的平均数,而36+42=7876,中位数落在B组,D组所在扇形的圆心角为360=36,故答案为:B,36;(3)家庭年文化教育消费10000元以上的家庭有2500=1200(户)【点评】本题考查扇形统计图、用样本估计总体以及中位数的运用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题21(2018年江苏省连云港市)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同(1)若前四局双方战成2:
18、2,那么甲队最终获胜的概率是;(2)现甲队在前两周比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求【解答】解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率22(2018年江苏省连云港市)如图,矩形ABCD中,E是AD的中
19、点,延长CE,BA交于点F,连接AC,DF(1)求证:四边形ACDF是平行四边形;(2)当CF平分BCD时,写出BC与CD的数量关系,并说明理由【分析】(1)利用矩形的性质,即可判定FAECDE,即可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;(2)先判定CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD【解答】解:(1)四边形ABCD是矩形,ABCD,FAE=CDE,E是AD的中点,AE=DE,又FEA=CED,FAECDE,CD=FA,又CDAF,四边形ACDF是平行四边形;(2)BC=2CD证明:C
20、F平分BCD,DCE=45,CDE=90,CDE是等腰直角三角形,CD=DE,E是AD的中点,AD=2CD,AD=BC,BC=2CD【点评】本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的23(2018年江苏省连云港市)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,2)、B(2,n)两点,与x轴交于点C(1)求k2,n的值;(2)请直接写出不等式k1x+b的解集;(3)将x轴下方的图象沿x轴翻折,点A落
21、在点A处,连接AB,AC,求ABC的面积【分析】(1)将A点坐标代入y=(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积【解答】解:(1)将A(4,2)代入y=,得k2=8y=将(2,n)代入y=n=4k2=8,n=4(2)根据函数图象可知:2x0或x4(3)将A(4,2),B(2,4)代入y=k1x+b,得k1=1,b=2一次函数的关系式为y=x+2与x轴交于点C(2,0)图象沿x轴翻折后,得A(4,2),SABC=(4+2)(4+2)4422=8ABC的面积为8【点评】本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题24(20
22、18年江苏省连云港市)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖经过调査获取信息如下:购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由【分析】(1)根据题意结合表格中数据,购买红色地砖4000块,蓝色地砖
23、6000块,需付款86000元;购买红色地砖10000块,蓝色地砖3500块,需付款99000元,分别得出方程得出答案;(2)利用已知得出x的取值范围,再利用一次函数增减性得出答案【解答】解:(1)设红色地砖每块a元,蓝色地砖每块b元,由题意可得:,解得:,答:红色地砖每块8元,蓝色地砖每块10元;(2)设购置蓝色地砖x块,则购置红色地砖(12000x)块,所需的总费用为y元,由题意可得:x(12000x),解得:x4000,又x6000,所以蓝砖块数x的取值范围:4000x6000,当4000x5000时,y=10x+0.8(12000x)=76800+3.6x,所以x=4000时,y有最小
24、值91200,当5000x6000时,y=0.910x+80.8(1200x)=2.6x+76800,所以x=5000时,y有最小值89800,8980091200,购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元【点评】此题主要考查了一次函数的应用以及二元一次方程组的应用,正确得出函数关系式是解题关键25(2018年江苏省连云港市)如图1,水坝的横截面是梯形ABCD,ABC=37,坝顶DC=3m,背水坡AD的坡度i(即tanDAB)为1:0.5,坝底AB=14m(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底间时拓宽加固,
25、使得AE=2DF,EFBF,求DF的长(参考数据:sin37,cos37,tan37)【分析】(1)作DMAB于M,CNAN于N由题意:tanDAB=2,设AM=x,则DM=2x,在RtBCN中,求出BN,构建方程即可解决问题;(2)作FHAB于H设DF=y,设DF=y,则AE=2y,EH=3+2yy=3+y,BH=14+2y(3+y)=11+y,由EFHFBH,可得=,即=,求出y即可;【解答】解:(1)作DMAB于M,CNAN于N由题意:tanDAB=2,设AM=x,则DM=2x,四边形DMNC是矩形,DM=CN=2x,在RtNBC中,tan37=,BN=x,x+3+x=14,x=3,DM
26、=6,答:坝高为6m(2)作FHAB于H设DF=y,设DF=y,则AE=2y,EH=3+2yy=3+y,BH=14+2y(3+y)=11+y,由EFHFBH,可得=,即=,解得y=7+2或72(舍弃),DF=27,答:DF的长为(27)m【点评】本题考查了坡度坡角的求解,考查了特殊角的三角函数值,考查了三角函数在直角三角形中运用,解题的关键是学会理由参数构建方程解决问题26(2018年江苏省连云港市)如图1,图形ABCD是由两个二次函数y1=kx2+m(k0)与y2=ax2+b(a0)的部分图象围成的封闭图形已知A(1,0)、B(0,1)、D(0,3)(1)直接写出这两个二次函数的表达式;(2
27、)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得BDC与ADE相似(其中点C与点E是对应顶点)的点E的坐标【分析】(1)利用待定系数法即可得出结论;(2)先确定出MM=(1m2)(3m23)=44m2,进而建立方程2m=44m2,即可得出结论;(3)先利用勾股定理求出AD=,同理:CD=,BC=,再分两种情况:如图1,当DBCDAE时,得出,进而求出DE=,即可得出E(0,),再判断出DEFDAO,得出,求出DF=,EF=,再用面积法求出EM=,即可得出结论;如图2,当DBCADE时,得出,求出AE=
28、,当E在直线AD左侧时,先利用勾股定理求出PA=,PO=,进而得出PE=,再判断出即可得出点E坐标,当E在直线DA右侧时,即可得出结论【解答】解:(1)点A(1,0),B(0,1)在二次函数y1=kx2+m(k0)的图象上,二次函数解析式为y1=x2+1,点A(1,0),D(0,3)在二次函数y2=ax2+b(a0)的图象上,二次函数y2=3x23;(2)设M(m,m2+1)为第一象限内的图形ABCD上一点,M(m,3m23)为第四象限的图形上一点,MM=(1m2)(3m23)=44m2,由抛物线的对称性知,若有内接正方形,2m=44m2,m=或m=(舍),01,存在内接正方形,此时其边长为;
29、(3)在RtAOD中,OA=1,OD=3,AD=,同理:CD=,在RtBOC中,OB=OC=1,BC=,如图1,当DBCDAE时,CDB=ADO,在y轴上存在E,由,DE=,D(0,3),E(0,),由对称性知,在直线DA右侧还存在一点E使得DBCDAE,连接EE交DA于F点,作EMOD于M,连接ED,E,E关于DA对称,DF垂直平分线EE,DEFDAO,DF=,EF=,SDEE=DEEM=EFDF=,EM=,DE=DE=,在RtDEM中,DM=2,OM=1,E(,1),如图2,当DBCADE时,有BDC=DAE,AE=,当E在直线AD左侧时,设AE交y轴于P,作EQAC于Q,BDC=DAE=
30、ODA,PD=PA,设PD=n,PO=3n,PA=n,在RtAOP中,PA2=OA2+OP2,n2=(3n)2+1,n=,PA=,PO=,AE=,PE=,在AEQ中,OPEQ,OQ=,QE=2,E(,2),当E在直线DA右侧时,根据勾股定理得,AE=,AE=DAE=BDC,BDC=BDA,BDA=DAE,AEOD,E(1,),综上,使得BDC与ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,)或(,1)或(1,)或(,2)【点评】此题是二次函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,对称性,正确作出辅助线和用分类讨论的思想是解本题的关键27(12018
31、年江苏省连云港市)在数学兴趣小组活动中,小亮进行数学探究活动ABC是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求ECD的面积S1与DBF的面积S2之间的数量关系并说明理由(4)如图2,当ECD的面积S1=时,求AE的长【分析】(1)结论:ABECBF理由等边三角形的性质,根据SAS即可证明;(2)由
32、ABECBF,推出SABE=SBCF,推出S四边形BECF=SBEC+sBCF=SBCE+SABE=SABC=,由S四边形ABCF=,推出SABE=,再利用三角形的面积公式求出AE即可;(3)结论:S2S1=利用全等三角形的性质即可证明;(4)首先求出BDF的面积,由CFAB,则BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,推出CD=x,由CDAB,可得=,即=,求出x即可;【解答】解:(1)结论:ABECBF理由:如图1中,ABC,BEF都是等边三角形,BA=BC,BE=BF,ABC=EBF,ABE=CBF,ABECBF(2)如图1中,ABECBF,SABE=
33、SBCF,S四边形BECF=SBEC+sBCF=SBCE+SABE=SABC=,S四边形ABCF=,SABE=,AEABsiin60=,AE=(3)结论:S2S1=理由:如图2中,ABC,BEF都是等边三角形,BA=BC,BE=BF,ABC=EBF,ABE=CBF,ABECBF,SABE=SBCF,SBCFSBCE=S2S1,S2S1=SABESBCE=SABC=(4)由(3)可知:SBDFSECD=,SECD=,SBDF=,ABECBF,AE=CF,BAE=BCF=60,ABC=DCB,CFAB,则BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,CD=x,CDAB,=,即=,化简得:3x2x2=0,解得x=1或(舍弃),CE=1,AE=3【点评】本题考查四边形综合题、全等三角形的判定和性质、平行线等分线段定理、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题25
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100