1、青海省西宁市城区2021年中考真题数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1. 的相反数是()A B. -C. D. 2. 某几何体的三视图如图所示,则此几何体是( )A. 圆锥B. 圆柱C. 长方体D. 四棱柱3. 中国人最先使用负数,魏晋时期的数学家刘徽在其著作九章算术注中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负)如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A. B. C. D. 4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. 三角形B. 等边三角形C 平行四边形D. 菱形5. 下
2、列命题是真命题的是A. 同位角相等B. 是分式C. 数据6,3,10的中位数是3D. 第七次全国人口普查是全面调查6. 某市严格落实国家节水政策,2018年用水总量为6.5亿立方米,2020年用水总量为5.265亿立方米设该市用水总量的年平均降低率是x,那么x满足的方程是( )A. B. C. D. 7. 如图,的内切圆与分别相切于点D,E,F,连接,则阴影部分的面积为( )A. B. C. D. 8. 如图1,动点P从矩形ABCD的顶点A出发,在边AB,BC上沿ABC的方向,以1cm/s的速度匀速运动到点C,的面积S(cm2)随运动时间t(s)变化的函数图象如图2所示,则AB的长是( )A.
3、 B. C. D. 二填空题(本大题共10小题,每小题2分,共20分)9. 9的算术平方根是 10. 解决全人类温饱问题是“世界杂交水稻之父”袁隆平先生的毕生追求2020年中国粮食总产量达到657 000 000吨,已成为世界粮食第一大国将657 000 000用科学记数法表示为_11. 十二边形的内角和是_12. 计算_13. 从,-1,1,2,-5中任取一个数作为a,则抛物线的开口向上的概率是_14. 如图,是的直径,弦于点E,则的半径_15. 如图,在中,D,E分别是,的中点,连接,若,则点A到BC的距离是_16. 在平面直角坐标系中,点A的坐标是,若轴,且,则点B的坐标是_17. 如图
4、,是等边三角形,N是的中点,是边上的中线,M是上的一个动点,连接,则的最小值是_18. 如图,在矩形中,E为的中点,连接,过点E作的垂线交于点F,交CD的延长线于点G,连接CF已知,则_三、解答题19. 计算: 20 解方程:21. 计算:22. 解方程:23. 如图,四边形是菱形,对角线,相交于点O,(1)求证:四边形是矩形;(2)若,求矩形的周长24. 如图,正比例函数与反比例函数的图象交于点A,轴于点B,延长AB至点C,连接若,(1)求的长和反比例函数的解析式;(2)将绕点旋转90,请直接写出旋转后点A的对应点A的坐标25. 某校在“庆祝建党100周年”系列活动中举行了主题为“学史明理,
5、学史增信,学史崇德,学史力行”的党史知识竞赛设竞赛成绩为x分,若规定:当时为优秀,时为良好,时为一般,现随机抽取30位同学的竞赛成绩如下:9888907210078959210099849275100859093937092788991839398888590100(1)本次抽样调查样本容量是_,样本数据中成绩为“优秀”的频率是_;(2)在本次调查中,A,B,C,D四位同学竞赛成绩均为100分,其中A,B在九年级,C在八年级,D在七年级,若要从中随机抽取两位同学参加联盟校的党史知识竞赛,请用画树状图或列表的方法求出抽到的两位同学都在九年级的概率,并写出所有等可能结果26. 如图,内接于,是的直
6、径,交于点E,过点D作,交的延长线于点F,连接(1)求证:是的切线;(2)已知,求的长27. 城乡学校集团化办学已成为西宁教育的一张名片“五四”期间,西宁市某集团校计划组织乡村学校初二年级200名师生到集团总校共同举办“十四岁集体生日”现需租用A,B两种型号的客车共10辆,两种型号客车的载客量(不包括司机)和租金信息如下表:型号载客量(人/辆)租金单价(元/辆)AA16900B221200若设租用A型客车x辆,租车总费用为y元(1)请写出y与x的函数关系式(不要求写自变量取值范围);(2)据资金预算,本次租车总费用不超过11800元,则A型客车至少需租几辆?(3)在(2)的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案28. 如图,在平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B,点C的坐标为,抛物线经过A,B,C三点(1)求抛物线的解析式;(2)直线AD与y轴负半轴交于点D,且,求证:;(3)在(2)的条件下,若直线与抛物线的对称轴l交于点E,连接,在第一象限内的抛物线上是否存在一点P,使四边形的面积最大?若存在,请求出点P的坐标及四边形面积的最大值;若不存在,请说明理由