ImageVerifierCode 换一换
格式:DOC , 页数:30 ,大小:556.31KB ,
资源ID:499684      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/499684.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2016年吉林省中考数学试卷(含解析版).doc)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2016年吉林省中考数学试卷(含解析版).doc

1、2016年吉林省中考数学试卷一、单项选择题:每小题2分,共12分1在0,1,2,3这四个数中,最小的数是()A0 B1 C2 D32习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A1.17106 B1.17107 C1.17108 D11.71063用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为() A B C D4计算(a3)2结果正确的是()Aa5 Ba5 Ca6 Da65小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A(3a

2、+4b)元 B(4a+3b)元 C4(a+b)元 D3(a+b)元6如图,阴影部分是两个半径为1的扇形,若=120,=60,则大扇形与小扇形的面积之差为()A B C D二、填空题:每小题3分,共24分7化简:=8分解因式:3x2x=9若x24x+5=(x2)2+m,则m=10某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为11如图,ABCD,直线EF分别交AB、CD于M,N两点,将一个含有45角的直角三角尺按如图所示的方式摆放,若EMB=75,则PNM等于度12如图,已知线段AB,分

3、别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB若FA=5,则FB=13如图,四边形ABCD内接于O,DAB=130,连接OC,点P是半径OC上任意一点,连接DP,BP,则BPD可能为度(写出一个即可)14在三角形纸片ABC中,C=90,B=30,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则DEF的周长为(用含a的式子表示)三、解答题:每小题5分,共20分15先化简,再求值:(x+2)(x2)+x(4x),其中x=16解方程: =17在一个不透明的口袋中装有1个红球,

4、1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率18如图,菱形ABCD的对角线AC,BD相交于点O,且DEAC,AEBD求证:四边形AODE是矩形四、解答题:每小题7分,共28分19图1,图2都是88的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图1中所画的平行四边形的面积

5、为20某校学生会为了解环保知识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根调查收集的数据绘制了如下的扇形统计图,其中对垃圾分类非常了解的学生有30人(1)本次抽取的学生有人;(2)请补全扇形统计图;(3)请估计该校1600名学生中对垃圾分类不了解的人数21如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角=43,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43=0.68,cos43=0.73,tan43=0.93)22如图,在平面直径坐标系中,反比例函数y=(x0)的图象上有一点A(m,4),过点A作ABx

6、轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式五、解答题:每小题8分,共16分23甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示(1)甲的速度是km/h;(2)当1x5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距km24(1)如图1,在RtABC中,ABC=90,以点B为中心,把ABC逆时针旋转90,得到A1BC1;再以点C为中心,把ABC顺时针旋转90,得到A2B1C,连接C1B

7、1,则C1B1与BC的位置关系为;(2)如图2,当ABC是锐角三角形,ABC=(60)时,将ABC按照(1)中的方式旋转,连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明;(3)如图3,在图2的基础上,连接B1B,若C1B1=BC,C1BB1的面积为4,则B1BC的面积为六、解答题:每小题10分,共20分25如图,在等腰直角三角形ABC中,BAC=90,AC=8cm,ADBC于点D,点P从点A出发,沿AC方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQAB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且PQM=90(点M,C位于PQ异侧)设点P的运动

8、时间为x(s),PQM与ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围26如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点(1)当m=2时,a=,当m=3时,a=;(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当APQ为等腰直角三角形时,a和n的关系式为 a=;(4)利用(2)(3)中的结论

9、,求AOB与APQ的面积比2016年吉林省中考数学试卷参考答案与试题解析一、单项选择题:每小题2分,共12分1在0,1,2,3这四个数中,最小的数是()A0 B1 C2 D3【考点】有理数大小比较【分析】直接利用负数小于0,进而得出答案【解答】解:在0,1,2,3这四个数中,最小的数是:2故选:C2习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A1.17106B1.17107C1.17108D11.7106【考点】科学记数法表示较大的数【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确

10、定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【解答】解:11700000用科学记数法表示为1.17107,故选:B3用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为()A B C D【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:A4计算(a3)2结果正确的是()Aa5Ba5Ca6Da6【考点】幂的乘方与积的乘方【分析】原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断

11、【解答】解:原式=a6,故选D5小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A(3a+4b)元 B(4a+3b)元 C4(a+b)元 D3(a+b)元【考点】列代数式【分析】直接利用两种颜色的珠子的价格进而求出手链的价格【解答】解:黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费为:3a+4b故选:A6如图,阴影部分是两个半径为1的扇形,若=120,=60,则大扇形与小扇形的面积之差为()A B C D【考点】扇形面积的计算【分析】利用扇形的面积公式分别求出两个扇形的面积,再用较大面积减去较小的面积

12、即可【解答】解:=,故选B二、填空题:每小题3分,共24分7化简:=【考点】二次根式的加减法【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可【解答】解:原式=2=故答案为:8分解因式:3x2x=x(3x1)【考点】因式分解-提公因式法【分析】直接提取公因式x,进而分解因式得出答案【解答】解:3x2x=x(3x1)故答案为:x(3x1)9若x24x+5=(x2)2+m,则m=1【考点】配方法的应用【分析】已知等式左边配方得到结果,即可确定出m的值【解答】解:已知等式变形得:x24x+5=x24x+4+1=(x2)2+1=(x2)2+m,则m=1,故答案为:110某学校要购买电

13、脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为【考点】由实际问题抽象出二元一次方程组【分析】根据题意得到:A型电脑数量+B型电脑数量=10,A型电脑数量5000+B型电脑数量3000=34000,列出方程组即可【解答】解:根据题意得:,故答案为:11如图,ABCD,直线EF分别交AB、CD于M,N两点,将一个含有45角的直角三角尺按如图所示的方式摆放,若EMB=75,则PNM等于30度【考点】平行线的性质【分析】根据平行线的性质得到DNM=BME=75,由等腰直角三角形的性质得到PND=45,即可

14、得到结论【解答】解:ABCD,DNM=BME=75,PND=45,PNM=DNMDNP=30,故答案为:3012如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB若FA=5,则FB=5【考点】作图基本作图;线段垂直平分线的性质【分析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题【解答】解:由题意直线CD是线段AB的垂直平分线,点F在直线CD上,FA=FB,FA=5,FB=5故答案为513如图,四边形ABCD内接于O,DAB=130,连接OC,点

15、P是半径OC上任意一点,连接DP,BP,则BPD可能为80度(写出一个即可)【考点】圆内接四边形的性质;圆周角定理【分析】连接OB、OD,根据圆内接四边形的性质求出DCB的度数,根据圆周角定理求出DOB的度数,得到DCBBPDDOB【解答】解:连接OB、OD,四边形ABCD内接于O,DAB=130,DCB=180130=50,由圆周角定理得,DOB=2DCB=100,DCBBPDDOB,即50BPD100,BPD可能为80,故答案为:8014在三角形纸片ABC中,C=90,B=30,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则DEF的周长为3a(用

16、含a的式子表示)【考点】翻折变换(折叠问题)【分析】由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30角的直角三角形的性质得出DF=BF=a,即可得出DEF的周长【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,BF=2a,B=30,DF=BF=a,DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a三、解答题:每小题5分,共20分15先化简,再求值:(x+2)(x2)+x(4x),其中x=【考点】整式的混合运算化简求值【分析】根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x=代入化简后的式子

17、,即可求得原式的值【解答】解:(x+2)(x2)+x(4x)=x24+4xx2=4x4,当x=时,原式=16解方程: =【考点】解分式方程【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【解答】解:去分母得:2x2=x+3,解得:x=5,经检验x=5是分式方程的解17在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率【考点】列表法与树状图法【分析】首先根据题意画出树状

18、图,然后由树状图求得所有等可能的结果与两次摸到的球都是红球的情况,再利用概率公式即可求得答案【解答】解:画树状图得:共有9种等可能的结果,摸到的两个球都是红球的有1种情况,两次摸到的球都是红球的概率=18如图,菱形ABCD的对角线AC,BD相交于点O,且DEAC,AEBD求证:四边形AODE是矩形【考点】矩形的判定;菱形的性质【分析】根据菱形的性质得出ACBD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形【解答】证明:四边形ABCD为菱形,ACBD,AOD=90,DEAC,AEBD,四边形AODE为平行四边形,四边形AODE是矩形四、解答题:

19、每小题7分,共28分19图1,图2都是88的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图1中所画的平行四边形的面积为6【考点】作图应用与设计作图;平行四边形的性质【分析】(1)根据平行四边形的判定,利用一组对边平行且相等的四边形为平行四边形可在图1和图2中按要求画出平行四边形;(2)根据平行四边形的面积公式计算【解答】解:(1)如图1,如图2;(2)图1中所画的平行四边形的面积=23=6故答案为620某校学生会为了解环保知

20、识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根调查收集的数据绘制了如下的扇形统计图,其中对垃圾分类非常了解的学生有30人(1)本次抽取的学生有300人;(2)请补全扇形统计图;(3)请估计该校1600名学生中对垃圾分类不了解的人数【考点】扇形统计图;用样本估计总体【分析】(1)根据不了解的人数除以不了解的人数所占的百分比,可得的答案;(2)根据有理数的减法,可得答案;(3)根据样本估计总体,可得答案【解答】解:(1)3010%=300,故答案为:300;(2)如图,了解很少的人数所占的百分比130%10%20%=40%,故答案为:40%,(3)160030%=48

21、0人,该校1600名学生中对垃圾分类不了解的人数480人21如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角=43,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43=0.68,cos43=0.73,tan43=0.93)【考点】解直角三角形的应用-仰角俯角问题【分析】先利用平行线的性质得到B=43,然后利用B的正弦计算AB的长【解答】解:如图,B=43,在RtABC中,sinB=,AB=1765(m)答:飞机A与指挥台B的距离为1765m22如图,在平面直径坐标系中,反比例函数y=(x0)的图象上有一点A(m,4),过点A作ABx轴于

22、点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为m+2(用含m的式子表示);(2)求反比例函数的解析式【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;坐标与图形变化-平移【分析】(1)由点A(m,4),过点A作ABx轴于点B,将点B向右平移2个单位长度得到点C,可求得点C的坐标,又由过点C作y轴的平行线交反比例函数的图象于点D,CD=,即可表示出点D的横坐标;(2)由点D的坐标为:(m+2,),点A(m,4),即可得方程4m=(m+2),继而求得答案【解答】解:(1)A(m,4),ABx轴于点B,B的坐标为(

23、m,0),将点B向右平移2个单位长度得到点C,点C的坐标为:(m+2,0),CDy轴,点D的横坐标为:m+2;故答案为:m+2;(2)CDy轴,CD=,点D的坐标为:(m+2,),A,D在反比例函数y=(x0)的图象上,4m=(m+2),解得:m=1,点a的横坐标为(1,4),k=4m=4,反比例函数的解析式为:y=五、解答题:每小题8分,共16分23甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示(1)甲的速度是60km/h;(2)当1x5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距220km【考点

24、】一次函数的应用【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)求出乙距A地240km时的时间,乘以甲的速度即可得到结果【解答】解:(1)根据图象得:3606=60km/h;(2)当1x5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=90,则y乙=90x90;(3)令y乙=240,得到x=,则甲与A地相距60=220km,故答案为:(1)60;(3)22024(1)如图1,在RtABC中,ABC=90,以点B为中心,把ABC逆时针旋转90,得到A1BC1;再以点C为中心,把ABC顺时针旋转9

25、0,得到A2B1C,连接C1B1,则C1B1与BC的位置关系为平行;(2)如图2,当ABC是锐角三角形,ABC=(60)时,将ABC按照(1)中的方式旋转,连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明;(3)如图3,在图2的基础上,连接B1B,若C1B1=BC,C1BB1的面积为4,则B1BC的面积为6【考点】几何变换综合题【分析】(1)根据旋转的性质得到C1BC=B1BC=90,BC1=BC=CB1,根据平行线的判定得到BC1CB1,推出四边形BCB1C1是平行四边形,根据平行四边形的性质即可得到结论;(2)过C1作C1EB1C于E,于是得到C1EB=B1CB,由

26、旋转的性质得到BC1=BC=B1C,C1BC=B1CB,等量代换得到C1BC=C1EB,根据等腰三角形的判定得到C1B=C1E,等量代换得到C1E=B1C,推出四边形C1ECB1是平行四边形,根据平行四边形的性质即可得到结论;(3)设C1B1与BC之间的距离为h,由已知条件得到=,根据三角形的面积公式得到=,于是得到结论【解答】解:(1)平行,把ABC逆时针旋转90,得到A1BC1;再以点C为中心,把ABC顺时针旋转90,得到A2B1C,C1BC=B1BC=90,BC1=BC=CB1,BC1CB1,四边形BCB1C1是平行四边形,C1B1BC,故答案为:平行;(2)证明:如图,过C1作C1EB

27、1C,交BC于E,则C1EB=B1CB,由旋转的性质知,BC1=BC=B1C,C1BC=B1CB,C1BC=C1EB,C1B=C1E,C1E=B1C,四边形C1ECB1是平行四边形,C1B1BC;(3)由(2)知C1B1BC,设C1B1与BC之间的距离为h,C1B1=BC,=,S=B1C1h,S=BCh,=,C1BB1的面积为4,B1BC的面积为6,故答案为:6六、解答题:每小题10分,共20分25如图,在等腰直角三角形ABC中,BAC=90,AC=8cm,ADBC于点D,点P从点A出发,沿AC方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQAB交BC于点Q,以线段PQ为边作等腰

28、直角三角形PQM,且PQM=90(点M,C位于PQ异侧)设点P的运动时间为x(s),PQM与ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=4;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围【考点】三角形综合题【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题(2)如图1中,当点M落在AD上时,作PEQC于E,先证明DQ=QE=EC,由PEAD,得=,由此即可解决问题(3)分三种情形当0x4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为PEF,当4x时,如图3中,设PM、MQ分别交

29、AD于E、G,则重叠部分为四边形PEGQ当x8时,如图4中,则重合部分为PMQ,分别计算即可解决问题【解答】解:(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,AP=CP=4,所以x=4故答案为4(2)如图1中,当点M落在AD上时,作PEQC于EMQP,PQE,PEC都是等腰直角三角形,MQ=PQ=PCDQ=QE=EC,PEAD,=,AC=8,PA=,x=故答案为(3)当0x4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为PEF,AP=x,EF=PE=x,y=SPEF=PEEF=x2当4x时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEG

30、QPQ=PC=8x,PM=162x,ME=PMPE=163x,y=SPMQSMEG=(8x)2(163x)2=x2+32x64当x8时,如图4中,则重合部分为PMQ,y=SPMQ=PQ2=(8x)2=x216x+64综上所述y=26如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点(1)当m=2时,a=,当m=3时,a=;(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当APQ为等腰直角三角形时,a

31、和n的关系式为 a=;(4)利用(2)(3)中的结论,求AOB与APQ的面积比【考点】二次函数综合题【分析】(1)由AOB为等边三角形,AB=2m,得出点A,B坐标,再由点A,B,O在抛物线上建立方程组,得出结论,最后代m=2,m=3,求值即可;(2)同(1)的方法得出结论(3)由APQ为等腰直角三角形,PQ的长度为2n,设A(e,d+n),P(en,d),Q(e+n,d),建立方程组求解即可;(4)由(2)(3)的结论得到m=n,再根据面积公式列出式子,代入化简即可【解答】解:(1)如图1,点B在x轴正半轴上,OB的长度为2m,B(2m,0),以OB为边向上作等边三角形AOB,AM=m,OM

32、=m,A(m, m),抛物线l:y=ax2+bx+c经过点O,A,B三点,当m=2时,a=,当m=3时,a=,故答案为:,;(2)a=理由:如图1,点B在x轴正半轴上,OB的长度为2m,B(2m,0),以OB为边向上作等边三角形AOB,AM=m,OM=m,A(m, m),抛物线l:y=ax2+bx+c经过点O,A,B三点,a=,(3)如图2,APQ为等腰直角三角形,PQ的长度为2n,设A(e,d+n),P(en,d),Q(e+n,d),P,Q,A,O在抛物线l:y=ax2+bx+c上,化简得,2aean+b=1,化简得,2aeanb=1,化简得,an=1,a=故答案为a=,(4)OB的长度为2m,AM=m,SAOB=OBAM=2mm=m2,由(3)有,AN=nPQ的长度为2n,SAPQ=PQAN=2mn=n2,由(2)(3)有,a=,a=,=,m=n,=,AOB与APQ的面积比为3:12016年7月12日第30页(共30页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服