1、第 1 页(共 3 页)2017 年全国统一高考数学试卷(文科)(新课标年全国统一高考数学试卷(文科)(新课标)一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分在每小题给出的四个选项中,只有一项是分在每小题给出的四个选项中,只有一项是符合题目要求的符合题目要求的 1(5 分)设集合 A=1,2,3,B=2,3,4,则 AB=()A1,2,3,4 B1,2,3 C2,3,4 D1,3,4 2(5 分)(1+i)(2+i)=()A1i B1+3i C3+i D3+3i 3(5 分)函数 f(x)=sin(2x+)的最小正周期为()A4 B2 C D
2、4(5 分)设非零向量,满足|+|=|则()A B|=|C D|5(5 分)若 a1,则双曲线y2=1 的离心率的取值范围是()A(,+)B(,2)C(1,)D(1,2)6(5 分)如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A90 B63 C42 D36 7(5 分)设 x,y 满足约束条件,则 z=2x+y 的最小值是()A15 B9 C1 D9 8(5 分)函数 f(x)=ln(x22x8)的单调递增区间是()A(,2)B(,1)C(1,+)D(4,+)9(5 分)甲、乙、丙、丁四位同学一起去问老师询
3、问成语竞赛的成绩老师说:你们四人中有2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩看后甲对大家说:我还是不知道我的成绩根据以上信息,则()A乙可以知道四人的成绩 B丁可以知道四人的成绩 C乙、丁可以知道对方的成绩 D乙、丁可以知道自己的成绩 10(5 分)执行如图的程序框图,如果输入的 a=1,则输出的 S=()A2 B3 C4 D5 第 2 页(共 3 页)11(5 分)从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A B C D 12(5 分)过抛物线 C
4、:y2=4x 的焦点 F,且斜率为的直线交 C 于点 M(M 在 x 轴上方),l为 C 的准线,点 N 在 l 上,且 MNl,则 M 到直线 NF 的距离为()A B2 C2 D3 二、填空题,本题共二、填空题,本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分 13(5 分)函数 f(x)=2cosx+sinx 的最大值为 14(5 分)已知函数 f(x)是定义在 R 上的奇函数,当 x(,0)时,f(x)=2x3+x2,则 f(2)=15(5 分)长方体的长、宽、高分别为 3,2,1,其顶点都在球 O 的球面上,则球 O 的表面积为 16(5 分)ABC 的内角 A,B
5、,C 的对边分别为 a,b,c,若 2bcosB=acosC+ccosA,则B=三、解答题:共三、解答题:共 70 分解答应写出文字说明,证明过程或演算步骤,第分解答应写出文字说明,证明过程或演算步骤,第 17 至至 21 题为必考题,题为必考题,每个试题考生都必须作答第每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答(一)必考题:共题为选考题,考生根据要求作答(一)必考题:共 60分分 17(12 分)已知等差数列an的前 n 项和为 Sn,等比数列bn的前 n 项和为 Tn,a1=1,b1=1,a2+b2=2(1)若 a3+b3=5,求bn的通项公式;(2)若 T3=21
6、,求 S3 18(12 分)如图,四棱锥 PABCD 中,侧面 PAD 为等边三角形且垂直于底面 ABCD,AB=BC=AD,BAD=ABC=90(1)证明:直线 BC平面 PAD;(2)若PCD 面积为 2,求四棱锥 PABCD 的体积 19(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记 A 表示事件“旧养殖法的箱产量低于 50kg”,估计 A 的概率;(2)填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关:箱产量50kg 箱产量50kg 旧养殖
7、法 新养殖法 (3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较 第 3 页(共 3 页)附:P(K2K)0.050 0.010 0.001 K 3.841 6.635 10.828 K2=20(12 分)设 O 为坐标原点,动点 M 在椭圆 C:+y2=1 上,过 M 作 x 轴的垂线,垂足为N,点 P 满足=(1)求点 P 的轨迹方程;(2)设点 Q 在直线 x=3 上,且=1证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F 21(12 分)设函数 f(x)=(1x2)ex(1)讨论 f(x)的单调性;(2)当 x0 时,f(x)ax+1,求 a 的取值范围 选
8、考题:共选考题:共 10 分。请考生在第分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。题中任选一题作答。如果多做,则按所做的第一题计分。选修选修 4-4:坐标系与参数方程:坐标系与参数方程 22(10 分)在直角坐标系 xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C1的极坐标方程为 cos=4(1)M 为曲线 C1上的动点,点 P 在线段 OM 上,且满足|OM|OP|=16,求点 P 的轨迹 C2的直角坐标方程;(2)设点 A 的极坐标为(2,),点 B 在曲线 C2上,求OAB 面积的最大值 选修选修 4-5:不等式选讲:不等式选讲 23已知 a0,b0,a3+b3=2证明:(1)(a+b)(a5+b5)4;(2)a+b2