1、2008年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1(3分)零上13记作+13,零下2可记作()A2B2C2D22(3分)(2008陕西)如图,这个几何体的主视图是()ABCD3(3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A等腰三角形B直角三角形C锐角三角形D钝角三角形4(3分)(2008陕西)把不等式组的解集表示在数轴上,正确的是()ABCD5(3分)(2008陕西)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万这组数据的众数和中位数分别
2、是()A20万、15万B10万、20万C10万、15万D20万、10万6(3分)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()AAB=CDBAD=BCCAC=BDDAB=BC7(3分)(2008陕西)方程(x2)2=9的解是()Ax1=5,x2=1Bx1=5,x2=1Cx1=11,x2=7Dx1=11,x2=78(3分)如图,直线AB对应的函数表达式是()Ay=x+3By=x+3Cy=x+3Dy=x+39(3分)(2008陕西)如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30,弦EFAB,则EF的长度为()A2B2CD210(3分)(2008陕西
3、)已知二次函数y=ax2+bx+c(其中a0,b0,c0),关于这个二次函数的图象有如下说法:图象的开口一定向上;图象的顶点一定在第四象限;图象与x轴的交点有一个在y轴的右侧以上说法正确的个数为()A0B1C2D3二、填空题(共6小题,每小题3分,满分18分)11(3分)(2008陕西)若=43,则的余角的大小是度12(3分)(2008陕西)计算:(2a2)3a4=13(3分)(2008陕西)一个反比例函数的图象经过点P(1,5),则这个函数的表达式是14(3分)(2008陕西)如图,菱形ABCD的边长为2,ABC=45,则点D的坐标为15(3分)(2008陕西)搭建如图的单顶帐篷需要17根钢
4、管,这样的帐篷按图、图的方式串起来搭建,则串7顶这样的帐篷需要根钢管16(3分)(2008陕西)如图,梯形ABCD中,ABDC,ADC+BCD=90,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1,S2,S3,则S1,S2,S3之间的关系是三、解答题(共9小题,满分72分)17(6分)(2008陕西)先化简,再求值:,其中a=2,b=18(6分)(2008陕西)已知:如图,B、C、E三点在同一条直线上,ACDE,AC=CE,ACD=B求证:BC=DE19(7分)(2008陕西)下面图,图是某校调查部分学生是否知道母亲生日情况的扇形和条形统计图:根据上图信息,解答下
5、列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日;(3)通过对以上数据的分析,你有何感想(用一句话回答)20(7分)(2008陕西)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜请你在他们提供的测量工具中选出所需工具,设计一种测量方案(1)所需的测量工具是:;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x21(8分)(2008陕西)如图,桌面上放置了红,黄,蓝三个不同颜
6、色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏(1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率22(8分)(2008陕西)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表品种 项目单价(元/棵)成活率劳务费(元/棵)A1595%3B2099%4设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵
7、,则造成这片林的总费用需多少元?23(8分)(2008陕西)如图,在RtABC中,ACB=90,AC=5,CB=12,AD是ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE(1)求证:AC=AE;(2)求AD的长24(10分)(2008陕西)如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形AEDCB;(3)经过A,E,D三点的抛物线能否由(1)中的抛物线平移得到?请说明理由
8、25(12分)(2008陕西)某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处如图,甲,乙两村坐落在夹角为30的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学点B在点M的北偏西30的3km处,点A在点M的正西方向,点D在点M的南偏西60的km处为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图中,画出铺设到点
9、A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值综上,你认为把供水站建在何处,所需铺设的管道最短?2008年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1(3分)【考点】正数和负数菁优网版权所有【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示【解答】解:“正”和“负”相对,由零上13记作+13,则零下2可记作2故选D【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量2(3分)【考点】简单组合
10、体的三视图菁优网版权所有【分析】找到从正面看所得到的图形即可【解答】解:从正面看可得上部为圆锥,下部为圆柱,中间的接合面在主视图中应为一条线,故选A【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图3(3分)【考点】三角形内角和定理菁优网版权所有【分析】已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型【解答】解:三角形的三个角依次为180=30,180=45,180=105,所以这个三角形是钝角三角形故选:D【点评】本题考查三角形的分类,这个三角形最大角为18090本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所
11、以最大角为715=1054(3分)【考点】解一元一次不等式组;在数轴上表示不等式的解集菁优网版权所有【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可【解答】解:解不等式,得x2,解不等式,得x1,所以不等式组的解集是1x2,故选C【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集5(3分)【考点】众数;中位数菁优网版权所有【分析】找中位数要把数据按从小到大的顺序排列,
12、位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个【解答】解:10万出现次数最多为3次,10万为众数;从小到大排列的第4,5两个数分别为10万,20万,其平均值即中位数为15万故选C【点评】本题考查数据的众数与中位数的判断解题时要细心6(3分)【考点】矩形的判定菁优网版权所有【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等【解答】解:可添加AC=BD,四边形ABCD的对角线互相平分,四边形ABCD是平行四边形,AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,四边形ABC
13、D是矩形,故选:C【点评】此题主要考查了矩形的判定,关键是矩形的判定:矩形的定义:有一个角是直角的平行四边形是矩形;有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形7(3分)【考点】解一元二次方程-直接开平方法菁优网版权所有【分析】根据平方根的定义首先开方,求得x2的值,进而求得x的值【解答】解:开方得,x2=3解得x1=5,x2=1故选A【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a0);ax2=b(a,b同号且a0);(x+a)2=b(b0);a(x+b)2=c(a,c同号且a0)法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程
14、解”(2)运用整体思想,会把被开方数看成整体(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点8(3分)【考点】待定系数法求一次函数解析式菁优网版权所有【分析】把点A(0,3),B(2,0)代入直线AB的方程,用待定系数法求出函数关系式,从而得出结果【解答】解:设直线AB对应的函数表达式是y=kx+b,把A(0,3),B(2,0)代入,得,解得,故直线AB对应的函数表达式是y=x+3故选A【点评】本题要注意利用一次函数的特点,来列出方程组,求出未知数的值从而求得其解析式9(3分)【考点】切线的性质;勾股定理;圆周角定理菁优网版权所有【分析】作辅助线,连接OC与OE根据一条弧所对的圆周角
15、等于它所对的圆心角的一半,可知EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OCAB;又EFAB,可知OCEF,最后由勾股定理可将EF的长求出【解答】解:连接OE和OC,且OC与EF的交点为MEDC=30,COE=60AB与O相切,OCAB,又EFAB,OCEF,即EOM为直角三角形在RtEOM中,EM=sin60OE=2=,EF=2EM,EF=故选B【点评】本题主要考查切线的性质及直角三角形的勾股定理10(3分)【考点】二次函数图象与系数的关系菁优网版权所有【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交
16、点情况进行推理,进而对所得结论进行判断【解答】解:a0,故正确;顶点横坐标0,故顶点不在第四象限,错误,a0,抛物线开口向上,c0,抛物线与y轴负半轴相交,故与x轴交点,必然一个在正半轴,一个在负半轴,故正确故选C【点评】本题考查二次函数的草图的确定与二次函数y=ax2+bx+c系数符号的确定二、填空题(共6小题,每小题3分,满分18分)11(3分)【考点】余角和补角菁优网版权所有【分析】根据余角定义直接解答【解答】解:的余角等于9043=47故答案为:47【点评】本题比较容易,考查余角的定义根据余角的定义可得的余角等于9043=4712(3分)【考点】幂的乘方与积的乘方;同底数幂的乘法菁优网
17、版权所有【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加,计算即可【解答】解:(2a2)3a4,=8a6a4,=8a10故答案为:8a10【点评】本题考查积的乘方的性质,同底数幂的乘法的性质,熟练掌握运算性质是解题的关键13(3分)【考点】待定系数法求反比例函数解析式菁优网版权所有【分析】先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式【解答】解:设反比例函数为y=把x=1,y=5代入,得k=5y=故答案为:y=【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容14(3分)【考点】坐标与图
18、形性质;菱形的性质菁优网版权所有【分析】根据坐标意义,点D坐标与垂线段有关,过点D向X轴垂线段DE,则OE、DE长即为点D坐标【解答】解:过点D作DEx轴,垂足为E在RtCDE中,CD=2CE=DE=OE=OC+CE=2+点D坐标为(2,)故答案为:(2,)【点评】此题主要考查坐标意义及坐标与垂线段关系,同时考查等腰直角三角形知识15(3分)【考点】规律型:图形的变化类菁优网版权所有【分析】根据题意分析可得:搭建如图的单顶帐篷需要17根钢管,从串第2顶帐篷开始,每多串一顶帐篷需多用11根钢管【解答】解:第一顶帐篷用钢管数为17根;串二顶帐篷用钢管数为17+111=28根;串三顶帐篷用钢管数为1
19、7+112=39根;以此类推,串七顶帐篷用钢管数为17+116=83根故答案为:83【点评】本题考查图形中的计数规律,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题16(3分)【考点】勾股定理菁优网版权所有【分析】过点A作AEBC交CD于点E,得到平行四边形ABCE和RtADE,根据平行四边形的性质和勾股定理,不难证明三个正方形的边长对应等于所得直角三角形的边【解答】解:过点A作AEBC交CD于点E,ABDC,四边形AECB是平行四边形,AB=EC,BC=AE,BCD=AED,ADC+BCD=90,DC=2AB,AB=DE,ADC+AED=90,DAE=90,那么AD2+A
20、E2=DE2,S1=AD2,S2=AB2=DE2,S3=BC2=AE2S2=S1+S3故答案为:S2=S1+S3【点评】本题的关键在于通过作辅助线把梯形的问题转换为平行四边形和直角三角形的问题,然后把三个正方形的边长整理到一个三角形中进行解题三、解答题(共9小题,满分72分)17(6分)【考点】分式的化简求值菁优网版权所有【分析】分式的加减法,关键是确定最简公分母为(a+b)(ab),再进行通分,化简为最简形式,最后把数代入求值【解答】解:原式=(4分)当a=2,b=时,原式=【点评】考查分式的化简与求值,主要的知识点是因式分解、通分、约分等18(6分)【考点】全等三角形的判定与性质菁优网版权
21、所有【分析】根据ACDE,证得ACD=D,BCA=E,通过等量代换可知B=D,再根据AC=CE,可证ABCCDE,所以BC=DE【解答】证明:ACDE,ACD=D,BCA=E又ACD=B,B=D在ABC和CDE中,ABCCDE(AAS)BC=DE【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件19(7分)【考点】扇形统计图;用样本估计总体;条形统计图菁优网版权所有【分析】(1)根据记不清的30人所占的比例是,计算总人数;(2)计
22、算样本中知道所占的百分比,再进一步计算总体中知道的学生人数;(3)根据数据进行合理分析【解答】解:(1)30=90(名)本次调查了90名学生知道的学生人数=90=50(名) 不知道的学生人数=90=10(名)补全的条形统计图如下:(2)2700=1500(名),估计这所学校有1500名学生知道母亲的生日(3)不知道母亲生日的人数还较多,应教育学生关心自己的母亲【点评】考查统计思想在实际生活中的应用20(7分)【考点】相似三角形的应用菁优网版权所有【分析】树比较高不易直接到达,因而可以利用三角形相似解决,利用树在阳光下出现的影子来解决【解答】解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)
23、如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,DEFBAC,【点评】本题运用相似三角形的知识测量高度及考查学生的实践操作能力,应用所学知识解决问题的能力本题答案有多种,测量方案也有多种,如(1)皮尺、标杆、平面镜;(2)皮尺、三角尺、标杆21(8分)【考点】列表法与树状图法;概率公式菁优网版权所有【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可【解答】解:(1)根据题意可得:桌面上放置了红,黄,蓝三个不同颜色的杯子,故随机翻一个杯子,翻到黄色杯子的概率为(3分)(2)将杯口朝上用“上”表示,杯口朝下用“下”表示,画树状图如下:由上面树状图可知:所有等可能出现的结
24、果共有9种,其中恰好有一个杯口朝上的有6种,(7分)P(恰好有一个杯口朝上)=(8分)【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=22(8分)【考点】一次函数的应用菁优网版权所有【分析】(1)A种树苗为x棵时,B种树苗为(2000x)棵,根据题意容易写出函数关系式;(2)根据题意,成活1960棵,即0.95x+0.99(2000x)=1960,可计算出此时x的值,再代入(1)中的函数关系式中就可计算出总费用【解答】解:(1)y=(15+3)x+(20+4)(2000x),=18x+4800024
25、x,=6x+48000;(2)由题意,可得0.95x+0.99(2000x)=1960,x=500当x=500时,y=6500+48000=45000,造这片林的总费用需45000元【点评】此题不难,关键要仔细审题,懂得把B种树苗用A种树苗为x表示出来,即(2000x)23(8分)【考点】圆周角定理;全等三角形的判定与性质;勾股定理菁优网版权所有【分析】(1)由圆O的圆周角ACB=90,根据90的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周
26、角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED全等,根据全等三角形的对应边相等即可得证;(2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用ABAE可求出EB的长,再由(1)AED=90,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CBCD表示出BD=12x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长【解答】解:(1)ACB=90,且ACB为圆O的圆周角(已知),AD为圆O的直径(90的圆周角所对的
27、弦为圆的直径),AED=90(直径所对的圆周角为直角),又AD是ABC的BAC的平分线(已知),CAD=EAD(角平分线定义),CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在RtACD和RtAED中,RtACDRtAED(HL),AC=AE(全等三角形的对应边相等);(2)ABC为直角三角形,且AC=5,CB=12,根据勾股定理得:AB=13,由(1)得到AED=90,则有BED=90,设CD=DE=x,则DB=BCCD=12x,EB=ABAE=ABAC=135=8,在RtBED中,根据勾股定理得:BD2=BE2+ED2,即(12x)2=x2+82,解得:x=,CD=,又AC=5,
28、ACD为直角三角形,根据勾股定理得:AD=【点评】此题考查了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,本题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的灵活运用圆周角定理及勾股定理是解本题的关键24(10分)【考点】作图-位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质菁优网版权所有【分析】(1)A,E,D三点坐标已知,可用一般式来求解;(2)延长OA到A,使OA=3OA,同理可得到其余各点;(3)根据二次项系数是否相同即可判断两个函数是否由平移得到【解答】解:(1)设经过A,E,D三点的抛物线的表达式为y
29、=ax2+bx+cA(1,),E(,2),D(2,)(1分),解之,得过A,E,D三点的抛物线的表达式为y=2x2+6x(4分)(2)如图(7分)(3)不能,理由如下:(8分)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+cA(3,),E(,6),D(6,),解之,得a=2,aa经过A,E,D三点的抛物线不能由(1)中的抛物线平移得到(8分)【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值25(12分)【考点】作图应用与设计作图菁优网版权所有【分析】(1)由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某
30、处的管道长度之和的最小值为MB+MD,求值即可;(2)作点M关于射线OE的对称点M,则MM=2ME,连接AM交OE于点P,且证明P点与D点重合,即AM过D点求出AM的值即是铺设到点A和点M处的管道长度之和最小的值;(3)作点M关于射线OF的对称点M,作MNOE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM,可证得N,D两点重合,即MN过D点求GM+GD=MD的值就是最小值【解答】解:方案一:由题意可得:A在M的正西方向,AMOE,BAM=BOE=30,又BMA=60MBOB,点M到甲村的最短距离为MB,(1分)点M到乙村的最短距离为MD,将供水站建在点M处时,管道沿MD,MB线路铺
31、设的长度之和最小,即最小值为MB+MD=3+(km);(3分)方案二:如图,作点M关于射线OE的对称点M,则MM=2ME,连接AM交OE于点P,PEAM,PE=AM,AM=2BM=6,PE=3,(4分)在RtDME中,DE=DMsin60=3,ME=DM=,PE=DE,P点与D点重合,即AM过D点,(6分)在线段CD上任取一点P,连接PA,PM,PM,则PM=PM,AP+PMAM,把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM=;(7分)方案三:作点M关于射线OF的对称点M,作MNOE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM,MN为点M到OE的最短距离,即MN=GM+GN在RtMHM中,MMN=30,MM=6,MH=3,NE=MH=3,DE=3,N,D两点重合,即MN过D点,在RtMDM中,DM=,MD=(10分)在线段AB上任取一点G,过G作GNOE于N点,连接GM,GM,显然GM+GN=GM+GNMD,把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=MD=,(11分)综上,3+,供水站建在M处,所需铺设的管道长度最短(12分)【点评】此题主要考查线路最短问题的作图和求值问题,有一定的难度第18页(共18页)
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100