ImageVerifierCode 换一换
格式:DOC , 页数:32 ,大小:436KB ,
资源ID:494524      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/494524.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版).doc)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版).doc

1、 2018年全国统一高考数学试卷(理科)(新课标Ⅲ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=(  ) A.{0} B.{1} C.{1,2} D.{0,1,2} 2.(5分)(1+i)(2﹣i)=(  ) A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i 3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼

2、的木构件的俯视图可以是(  ) A. B. C. D. 4.(5分)若sinα=,则cos2α=(  ) A. B. C.﹣ D.﹣ 5.(5分)(x2+)5的展开式中x4的系数为(  ) A.10 B.20 C.40 D.80 6.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是(  ) A.[2,6] B.[4,8] C.[,3] D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为(  ) A. B. C. D. 8.(5分)某群体中的每位成员使用移动支付的概率都为p

3、各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=(  ) A.0.7 B.0.6 C.0.4 D.0.3 9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=(  ) A. B. C. D. 10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为(  ) A.12 B.18 C.24 D.54 11.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一

4、条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为(  ) A. B.2 C. D. 12.(5分)设a=log0.20.3,b=log20.3,则(  ) A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b   二、填空题:本题共4小题,每小题5分,共20分。 13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ=   . 14.(5分)曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a=   . 15.(5分)函数f(x)=cos(3x+)在[0,π]的零点个数为 

5、  . 16.(5分)已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=    .   三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。 17.(12分)等比数列{an}中,a1=1,a5=4a3. (1)求{an}的通项公式; (2)记Sn为{an}的前n项和.若Sm=63,求m. 18.(12分)某工厂为提高生产效率,开展技术创

6、新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: (1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表: 超过m 不超过m 第一种生产方式 第二种生产方式 (3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:K2=

7、 P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 19.(12分)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值. 20.(12分)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0). (1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差

8、数列,并求该数列的公差. 21.(12分)已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x. (1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分) 22.(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点. (1)求α的取值范围; (2)求AB中点P的轨迹的参

9、数方程.   [选修4-5:不等式选讲](10分) 23.设函数f(x)=|2x+1|+|x﹣1|. (1)画出y=f(x)的图象; (2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.   2018年全国统一高考数学试卷(理科)(新课标Ⅲ) 参考答案与试题解析   一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=(  ) A.{0} B.{1} C.{1,2} D.{0,1,2} 【考点

10、1E:交集及其运算.菁优网版权所有 【专题】37:集合思想;4A:数学模型法;5J:集合. 【分析】求解不等式化简集合A,再由交集的运算性质得答案. 【解答】解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2}, ∴A∩B={x|x≥1}∩{0,1,2}={1,2}. 故选:C. 【点评】本题考查了交集及其运算,是基础题.   2.(5分)(1+i)(2﹣i)=(  ) A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i 【考点】A5:复数的运算.菁优网版权所有 【专题】38:对应思想;4A:数学模型法;5N:数系的扩充和复数. 【分析】直接利用复数

11、代数形式的乘除运算化简得答案. 【解答】解:(1+i)(2﹣i)=3+i. 故选:D. 【点评】本题考查了复数代数形式的乘除运算,是基础题.   3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(  ) A. B. C. D. 【考点】L7:简单空间图形的三视图.菁优网版权所有 【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离. 【分析】直接利用空间几何体的三视图的画法,判断选项

12、的正误即可. 【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A. 故选:A. 【点评】本题看出简单几何体的三视图的画法,是基本知识的考查.   4.(5分)若sinα=,则cos2α=(  ) A. B. C.﹣ D.﹣ 【考点】GS:二倍角的三角函数.菁优网版权所有 【专题】11:计算题;34:方程思想;4O:定义法;56:三角函数的求值. 【分析】cos2α=1﹣2sin2α,由此能求出结果. 【解答】解:∵sinα=,

13、 ∴cos2α=1﹣2sin2α=1﹣2×=. 故选:B. 【点评】本题考查二倍角的余弦值的求法,考查二倍角公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.   5.(5分)(x2+)5的展开式中x4的系数为(  ) A.10 B.20 C.40 D.80 【考点】DA:二项式定理.菁优网版权所有 【专题】11:计算题;34:方程思想;4O:定义法;5P:二项式定理. 【分析】由二项式定理得(x2+)5的展开式的通项为:Tr+1=(x2)5﹣r()r=,由10﹣3r=4,解得r=2,由此能求出(x2+)5的展开式中x4的系数. 【解答】解:由二项式定理

14、得(x2+)5的展开式的通项为: Tr+1=(x2)5﹣r()r=, 由10﹣3r=4,解得r=2, ∴(x2+)5的展开式中x4的系数为=40. 故选:C. 【点评】本题考查二项展开式中x4的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.   6.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是(  ) A.[2,6] B.[4,8] C.[,3] D.[2,3] 【考点】J9:直线与圆的位置关系.菁优网版权所有 【专题】11:计算题;34:方程思

15、想;49:综合法;5B:直线与圆. 【分析】求出A(﹣2,0),B(0,﹣2),|AB|=2,设P(2+,),点P到直线x+y+2=0的距离:d==∈[],由此能求出△ABP面积的取值范围. 【解答】解:∵直线x+y+2=0分别与x轴,y轴交于A,B两点, ∴令x=0,得y=﹣2,令y=0,得x=﹣2, ∴A(﹣2,0),B(0,﹣2),|AB|==2, ∵点P在圆(x﹣2)2+y2=2上,∴设P(2+,), ∴点P到直线x+y+2=0的距离: d==, ∵sin()∈[﹣1,1],∴d=∈[], ∴△ABP面积的取值范围是: [,]=[2,6]. 故选:A. 【点评】

16、本题考查三角形面积的取值范围的求法,考查直线方程、点到直线的距离公式、圆的参数方程、三角函数关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.   7.(5分)函数y=﹣x4+x2+2的图象大致为(  ) A. B. C. D. 【考点】3A:函数的图象与图象的变换.菁优网版权所有 【专题】38:对应思想;4R:转化法;51:函数的性质及应用. 【分析】根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可. 【解答】解:函数过定点(0,2),排除A,B. 函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1), 由f′(x)>0得2

17、x(2x2﹣1)<0, 得x<﹣或0<x<,此时函数单调递增, 由f′(x)<0得2x(2x2﹣1)>0, 得x>或﹣<x<0,此时函数单调递减,排除C, 也可以利用f(1)=﹣1+1+2=2>0,排除A,B, 故选:D. 【点评】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.   8.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=(  ) A.0.7 B.0.6 C.0.4 D.0.3 【考点】CH:

18、离散型随机变量的期望与方差.菁优网版权所有 【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;5I:概率与统计. 【分析】利用已知条件,转化为二项分布,利用方差转化求解即可. 【解答】解:某群体中的每位成员使用移动支付的概率都为p,看做是独立重复事件,满足X~B(10,p), P(x=4)<P(X=6),可得,可得1﹣2p<0.即p. 因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去). 故选:B. 【点评】本题考查离散型离散型随机变量的期望与方差的求法,独立重复事件的应用,考查转化思想以及计算能力.   9.(5分)△ABC

19、的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=(  ) A. B. C. D. 【考点】HR:余弦定理.菁优网版权所有 【专题】11:计算题;35:转化思想;49:综合法;58:解三角形. 【分析】推导出S△ABC==,从而sinC==cosC,由此能求出结果. 【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c. △ABC的面积为, ∴S△ABC==, ∴sinC==cosC, ∵0<C<π,∴C=. 故选:C. 【点评】本题考查三角形内角的求法,考查余弦定理、三角形面积公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

20、   10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为(  ) A.12 B.18 C.24 D.54 【考点】LF:棱柱、棱锥、棱台的体积;LG:球的体积和表面积.菁优网版权所有 【专题】11:计算题;31:数形结合;34:方程思想;35:转化思想;49:综合法;5F:空间位置关系与距离. 【分析】求出,△ABC为等边三角形的边长,画出图形,判断D的位置,然后求解即可. 【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6, 球心为O,三角形ABC 的外心为O′,显然D在O′O的延

21、长线与球的交点如图: O′C==,OO′==2, 则三棱锥D﹣ABC高的最大值为:6, 则三棱锥D﹣ABC体积的最大值为:=18. 故选:B. 【点评】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.   11.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为(  ) A. B.2 C. D. 【考点】KC:双曲线的性质.菁优网版权所有 【专题】11:计算题;38:对应思想;4R:转化法;5D:圆锥曲线的定义、性质与方程. 【

22、分析】先根据点到直线的距离求出|PF2|=b,再求出|OP|=a,在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|cos∠PF2O,代值化简整理可得a=c,问题得以解决. 【解答】解:双曲线C:﹣=1(a>0.b>0)的一条渐近线方程为y=x, ∴点F2到渐近线的距离d==b,即|PF2|=b, ∴|OP|===a,cos∠PF2O=, ∵|PF1|=|OP|, ∴|PF1|=a, 在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|COS∠PF2O, ∴6a2=b2+

23、4c2﹣2×b×2c×=4c2﹣3b2=4c2﹣3(c2﹣a2), 即3a2=c2, 即a=c, ∴e==, 故选:C. 【点评】本题考查了双曲线的简单性质,点到直线的距离公式,余弦定理,离心率,属于中档题.   12.(5分)设a=log0.20.3,b=log20.3,则(  ) A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b 【考点】4M:对数值大小的比较.菁优网版权所有 【专题】33:函数思想;48:分析法;51:函数的性质及应用. 【分析】直接利用对数的运算性质化简即可得答案. 【解答】解:∵a=log0.20.3

24、b=log20.3=, ∴=, , ∵,, ∴ab<a+b<0. 故选:B. 【点评】本题考查了对数值大小的比较,考查了对数的运算性质,是中档题.   二、填空题:本题共4小题,每小题5分,共20分。 13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ=  . 【考点】96:平行向量(共线);9J:平面向量的坐标运算.菁优网版权所有 【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用. 【分析】利用向量坐标运算法则求出=(4,2),再由向量平行的性质能求出λ的值. 【解答】解:∵向量=(1,2),=(2,

25、﹣2), ∴=(4,2), ∵=(1,λ),∥(2+), ∴, 解得λ=. 故答案为:. 【点评】本题考查实数值的求法,考查向量坐标运算法则、向量平行的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.   14.(5分)曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a= ﹣3 . 【考点】6H:利用导数研究曲线上某点切线方程.菁优网版权所有 【专题】11:计算题;34:方程思想;49:综合法;53:导数的综合应用. 【分析】球心函数的导数,利用切线的斜率列出方程求解即可. 【解答】解:曲线y=(ax+1)ex,可得y′=aex+(ax

26、1)ex, 曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 故答案为:﹣3. 【点评】本题考查函数的导数的应用切线的斜率的求法,考查转化思想以及计算能力.   15.(5分)函数f(x)=cos(3x+)在[0,π]的零点个数为 3 . 【考点】51:函数的零点.菁优网版权所有 【专题】11:计算题;38:对应思想;4O:定义法;57:三角函数的图像与性质. 【分析】由题意可得f(x)=cos(3x+)=0,可得3x+=+kπ,k∈Z,即x=+kπ,即可求出. 【解答】解:∵f(x)=cos(3x+)=0, ∴3x+

27、kπ,k∈Z, ∴x=+kπ,k∈Z, 当k=0时,x=, 当k=1时,x=π, 当k=2时,x=π, 当k=3时,x=π, ∵x∈[0,π], ∴x=,或x=π,或x=π, 故零点的个数为3, 故答案为:3 【点评】本题考查了余弦函数的图象和性质以及函数零点的问题,属于基础题.   16.(5分)已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=  2 . 【考点】K8:抛物线的性质;KN:直线与抛物线的综合.菁优网版权所有 【专题】11:计算题;34:方程思想;35:转化思想;49:综合

28、法;5D:圆锥曲线的定义、性质与方程. 【分析】由已知可求过A,B两点的直线方程为y=k(x﹣1),然后联立直线与抛物线方程组可得,k2x2﹣2(2+k2)x+k2=0,可表示x1+x2,x1x2,y1+y2,y1y2,由∠AMB=90°,向量的数量积为0,代入整理可求k. 【解答】解:∵抛物线C:y2=4x的焦点F(1,0), ∴过A,B两点的直线方程为y=k(x﹣1), 联立可得,k2x2﹣2(2+k2)x+k2=0, 设A(x1,y1),B(x2,y2), 则 x1+x2=,x1x2=1, ∴y1+y2=k(x1+x2﹣2)=,y1y2=k2(x1﹣1)(x2﹣1)=k2[

29、x1x2﹣(x1+x2)+1]=﹣4, ∵M(﹣1,1), ∴=(x1+1,y1﹣1),=(x2+1,y2﹣1), ∵∠AMB=90°,∴•=0 ∴(x1+1)(x2+1)+(y1﹣1)(y2﹣1)=0, 整理可得,x1x2+(x1+x2)+y1y2﹣(y1+y2)+2=0, ∴1+2+﹣4﹣+2=0, 即k2﹣4k+4=0, ∴k=2. 故答案为:2 【点评】本题主要考查了直线与圆锥曲线的相交关系的应用,解题的难点是本题具有较大的计算量.   三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为

30、选考题,考生根据要求作答。(一)必考题:共60分。 17.(12分)等比数列{an}中,a1=1,a5=4a3. (1)求{an}的通项公式; (2)记Sn为{an}的前n项和.若Sm=63,求m. 【考点】89:等比数列的前n项和.菁优网版权所有 【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列. 【分析】(1)利用等比数列通项公式列出方程,求出公比q=±2,由此能求出{an}的通项公式. (2)当a1=1,q=﹣2时,Sn=,由Sm=63,得Sm==63,m∈N,无解;当a1=1,q=2时,Sn=2n﹣1,由此能求出m. 【解答】解:(1)∵

31、等比数列{an}中,a1=1,a5=4a3. ∴1×q4=4×(1×q2), 解得q=±2, 当q=2时,an=2n﹣1, 当q=﹣2时,an=(﹣2)n﹣1, ∴{an}的通项公式为,an=2n﹣1,或an=(﹣2)n﹣1. (2)记Sn为{an}的前n项和. 当a1=1,q=﹣2时,Sn===, 由Sm=63,得Sm==63,m∈N,无解; 当a1=1,q=2时,Sn===2n﹣1, 由Sm=63,得Sm=2m﹣1=63,m∈N, 解得m=6. 【点评】本题考查等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

32、   18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: (1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表: 超过m 不超过m 第一种生产方式 第二种生产方式 (3)根据(2)中的列联表,能否有

33、99%的把握认为两种生产方式的效率有差异? 附:K2=, P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 【考点】BL:独立性检验.菁优网版权所有 【专题】38:对应思想;4A:数学模型法;5I:概率与统计. 【分析】(1)根据茎叶图中的数据判断第二种生产方式的工作时间较少些,效率更高; (2)根据茎叶图中的数据计算它们的中位数,再填写列联表; (3)列联表中的数据计算观测值,对照临界值得出结论. 【解答】解:(1)根据茎叶图中的数据知, 第一种生产方式的工作时间主要集中在72~92之间, 第二种生产方式的工作

34、时间主要集中在65~85之间, 所以第二种生产方式的工作时间较少些,效率更高; (2)这40名工人完成生产任务所需时间按从小到大的顺序排列后, 排在中间的两个数据是79和81,计算它们的中位数为m==80; 由此填写列联表如下; 超过m 不超过m 总计 第一种生产方式 15 5 20 第二种生产方式 5 15 20 总计 20 20 40 (3)根据(2)中的列联表,计算 K2===10>6.635, ∴能有99%的把握认为两种生产方式的效率有差异. 【点评】本题考查了列联表与独立性检验的应用问题,是基础题.   19.(12分)如图,边

35、长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值. 【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.菁优网版权所有 【专题】35:转化思想;4R:转化法;5F:空间位置关系与距离;5H:空间向量及应用. 【分析】(1)根据面面垂直的判定定理证明MC⊥平面ADM即可. (2)根据三棱锥的体积最大,确定M的位置,建立空间直角坐标系,求出点的坐标,利用向量法进行求解即可. 【解答】解:(1)证明:在半圆中,DM⊥MC, ∵正方

36、形ABCD所在的平面与半圆弧所在平面垂直, ∴AD⊥平面DCM,则AD⊥MC, ∵AD∩DM=D, ∴MC⊥平面ADM, ∵MC⊂平面MBC, ∴平面AMD⊥平面BMC. (2)∵△ABC的面积为定值, ∴要使三棱锥M﹣ABC体积最大,则三棱锥的高最大, 此时M为圆弧的中点, 建立以O为坐标原点,如图所示的空间直角坐标系如图 ∵正方形ABCD的边长为2, ∴A(2,﹣1,0),B(2,1,0),M(0,0,1), 则平面MCD的法向量=(1,0,0), 设平面MAB的法向量为=(x,y,z) 则=(0,2,0),=(﹣2,1,1), 由•=2y=0,•=﹣2x+y

37、z=0, 令x=1, 则y=0,z=2,即=(1,0,2), 则cos<,>===, 则面MAB与面MCD所成二面角的正弦值sinα==. 【点评】本题主要考查空间平面垂直的判定以及二面角的求解,利用相应的判定定理以及建立坐标系,利用向量法是解决本题的关键.   20.(12分)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0). (1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 【考点】K3:椭圆的标准方程;KL:直线与椭圆的综合.菁优网版权所有

38、专题】35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题. 【分析】(1)设A(x1,y1),B(x2,y2),利用点差法得6(x1﹣x2)+8m(y1﹣y2)=0,k==﹣=﹣ 又点M(1,m)在椭圆内,即,解得m的取值范围,即可得k<﹣, (2)设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2 由++=,可得x3﹣1=0,由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.即可证明|FA|+|FB|=2|FP|,求得A,B坐标再求公差. 【解答】解:(1)设A(x1,y1),B(x2,y2),

39、∵线段AB的中点为M(1,m), ∴x1+x2=2,y1+y2=2m 将A,B代入椭圆C:+=1中,可得 , 两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0, 即6(x1﹣x2)+8m(y1﹣y2)=0, ∴k==﹣=﹣ 点M(1,m)在椭圆内,即, 解得0<m ∴. (2)证明:设A(x1,y1),B(x2,y2),P(x3,y3), 可得x1+x2=2, ∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,y1+y2+y3=0, ∴x3=1,y3=﹣(y1+y2)=﹣2m ∵m>0,可得P在第四象限,故y3=﹣,m=,k

40、﹣1 由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=. 则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|, 联立,可得|x1﹣x2|= 所以该数列的公差d满足2d=|x1﹣x2|=, ∴该数列的公差为±. 【点评】本题考查直线与椭圆的位置关系的综合应用,考查了点差法、焦半径公式,考查分析问题解决问题的能力,转化思想的应用与计算能力的考查.属于中档题.   21.(12分)已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x. (1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0; (

41、2)若x=0是f(x)的极大值点,求a. 【考点】6D:利用导数研究函数的极值.菁优网版权所有 【专题】34:方程思想;35:转化思想;48:分析法;53:导数的综合应用. 【分析】(1)对函数f(x)两次求导数,分别判断f′(x)和f(x)的单调性,结合f(0)=0即可得出结论; (2)令h(x)为f′(x)的分子,令h″(0)计算a,讨论a的范围,得出f(x)的单调性,从而得出a的值. 【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1). ,, 可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0 ∴f′(x)在

42、﹣1,0)递减,在(0,+∞)递增, ∴f′(x)≥f′(0)=0, ∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0. ∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0. (2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得 f′(x)=(1+2ax)ln(1+x)+﹣2=, 令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1), h′(x)=4ax+(4ax+2a+1)ln(x+1). 当a≥0,x>0时,h′(x)>0,h(x)单调递增, ∴h(x)>h(0)=0,即f′(x)>0, ∴f(x)在(

43、0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意. 当a<0时,h″(x)=8a+4aln(x+1)+, 显然h″(x)单调递减, ①令h″(0)=0,解得a=﹣. ∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0, ∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减, ∴h′(x)≤h′(0)=0, ∴h(x)单调递减,又h(0)=0, ∴当﹣1<x<0时,h(x)>0,即f′(x)>0, 当x>0时,h(x)<0,即f′(x)<0, ∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减, ∴x=0是f(x)的极大值点,

44、符合题意; ②若﹣<a<0,则h″(0)=1+6a>0,h″(e﹣1)=(2a﹣1)(1﹣e)<0, ∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x0, ∴当0<x<x0时,h″(x)>0,h′(x)单调递增, ∴h′(x)>h′(0)=0,即f′(x)>0, ∴f(x)在(0,x0)上单调递增,不符合题意; ③若a<﹣,则h″(0)=1+6a<0,h″(﹣1)=(1﹣2a)e2>0, ∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1, ∴当x1<x<0时,h″(x)<0,h′(x)单调递减, ∴h′(x)>h′(0)=0,∴h(x)单调递增, ∴h(x)<

45、h(0)=0,即f′(x)<0, ∴f(x)在(x1,0)上单调递减,不符合题意. 综上,a=﹣. 【点评】本题考查了导数与函数单调性的关系,函数单调性与极值的计算,零点的存在性定理,属于难题.   (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分) 22.(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点. (1)求α的取值范围; (2)求AB中点P的轨迹的参数方程. 【考点】QK:圆的参数方程.菁优网版权所有

46、专题】11:计算题;35:转化思想;49:综合法;5S:坐标系和参数方程. 【分析】(1)⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,从而圆心O(0,0)到直线l的距离d=<1,进而求出或,由此能求出α的取值范围. (2)设直线l的方程为x=m(y+),联立,得(m2+1)y2+2+2m2﹣1=0,由此利用韦达定理、中点坐标公式能求出AB中点P的轨迹的参数方程. 【解答】解:(1)∵⊙O的参数方程为(θ为参数), ∴⊙O的普通方程为x2+y2=1,圆心为O

47、0,0),半径r=1, 当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立; 当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x﹣, ∵倾斜角为α的直线l与⊙O交于A,B两点, ∴圆心O(0,0)到直线l的距离d=<1, ∴tan2α>1,∴tanα>1或tanα<﹣1, ∴或, 综上α的取值范围是(,). (2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+), 设A(x1,y1),(B(x2,y2),P(x3,y3), 联立,得(m2+1)y2+2+2m2﹣1=0, , =﹣+2, =,=﹣, ∴AB中点P的轨迹的参

48、数方程为,(m为参数),(﹣1<m<1). 【点评】本题考查直线直线的倾斜角的取值范围的求法,考查线段的中点的参数方程的求法,考查参数方程、直角坐标方和、韦达定理、中点坐标公式等基础知识,考查数形结合思想的灵活运用,考查运算求解能力,考查函数与方程思想,是中档题.   [选修4-5:不等式选讲](10分) 23.设函数f(x)=|2x+1|+|x﹣1|. (1)画出y=f(x)的图象; (2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值. 【考点】3B:分段函数的解析式求法及其图象的作法;5B:分段函数的应用.菁优网版权所有 【专题】31:数形结合;4R:

49、转化法;51:函数的性质及应用;59:不等式的解法及应用. 【分析】(1)利用分段函数的性质将函数表示为分段函数形式进行作图即可. (2)将不等式恒成立转化为图象关系进行求解即可. 【解答】解:(1)当x≤﹣时,f(x)=﹣(2x+1)﹣(x﹣1)=﹣3x, 当﹣<x<1,f(x)=(2x+1)﹣(x﹣1)=x+2, 当x≥1时,f(x)=(2x+1)+(x﹣1)=3x, 则f(x)=对应的图象为: 画出y=f(x)的图象; (2)当x∈[0,+∞)时,f(x)≤ax+b, 当x=0时,f(0)=2≤0•a+b,∴b≥2, 当x>0时,要使f(x)≤ax+b恒成立, 则函数f(x)的图象都在直线y=ax+b的下方或在直线上, ∵f(x)的图象与y轴的交点的纵坐标为2, 且各部分直线的斜率的最大值为3, 故当且仅当a≥3且b≥2时,不等式f(x)≤ax+b在[0,+∞)上成立, 即a+b的最小值为5. 【点评】本题主要考查分段函数的应用,利用不等式和函数之间的关系利用数形结合是解决本题的关键.  

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服