ImageVerifierCode 换一换
格式:PDF , 页数:3 ,大小:473.52KB ,
资源ID:494225      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/494225.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(原卷版).pdf)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(原卷版).pdf

1、第 1 页(共 3 页)2009 年全国统一高考数学试卷(理科)(全国卷年全国统一高考数学试卷(理科)(全国卷)一、选择题(共一、选择题(共 12 小题,每小题小题,每小题 5 分,满分分,满分 60 分)分)1(5 分)设集合 A=4,5,7,9,B=3,4,7,8,9,全集 U=AB,则集合U(AB)中的元素共有()A3 个 B4 个 C5 个 D6 个 2(5 分)已知=2+i,则复数 z=()A1+3i B13i C3+i D3i 3(5 分)不等式1 的解集为()Ax|0 x1x|x1 Bx|0 x1 Cx|1x0 Dx|x0 4(5 分)已知双曲线=1(a0,b0)的渐近线与抛物线

2、 y=x2+1 相切,则该双曲线的离心率为()A B2 C D 5(5 分)甲组有 5 名男同学,3 名女同学;乙组有 6 名男同学、2 名女同学若从甲、乙两组中各选出 2 名同学,则选出的 4 人中恰有 1 名女同学的不同选法共有()A150 种 B180 种 C300 种 D345 种 6(5 分)设、是单位向量,且,则的最小值为()A2 B2 C1 D1 7(5 分)已知三棱柱 ABCA1B1C1的侧棱与底面边长都相等,A1在底面 ABC 上的射影 D 为 BC 的中点,则异面直线 AB 与 CC1所成的角的余弦值为()A B C D 8(5 分)如果函数 y=3cos(2x+)的图象关

3、于点(,0)中心对称,那么|的最小值为()A B C D 9(5 分)已知直线 y=x+1 与曲线 y=ln(x+a)相切,则 a 的值为()A1 B2 C1 D2 10(5 分)已知二面角 l 为 60,动点 P、Q 分别在面、内,P 到 的距离为,Q 到 的距离为,则 P、Q 两点之间距离的最小值为()A1 B2 C D4 11(5 分)函数 f(x)的定义域为 R,若 f(x+1)与 f(x1)都是奇函数,则()Af(x)是偶函数 Bf(x)是奇函数 Cf(x)=f(x+2)Df(x+3)是奇函数 12(5 分)已知椭圆 C:+y2=1 的右焦点为 F,右准线为 l,点 Al,线段 AF

4、 交 C 于点 B,若=3,则|=()A B2 C D3 二、填空题(共二、填空题(共 4 小题,每小题小题,每小题 5 分,满分分,满分 20 分)分)13(5 分)(xy)10的展开式中,x7y3的系数与 x3y7的系数之和等于 14(5 分)设等差数列an的前 n 项和为 Sn,若 S9=81,则 a2+a5+a8=15(5 分)直三棱柱 ABCA1B1C1的各顶点都在同一球面上,若 AB=AC=AA1=2,BAC=120,则此球的表面积等于 第 2 页(共 3 页)16(5 分)若,则函数 y=tan2xtan3x 的最大值为 三、解答题(共三、解答题(共 6 小题,满分小题,满分 7

5、0 分)分)17(10 分)在ABC 中,内角 A、B、C 的对边长分别为 a、b、c,已知 a2c2=2b,且sinAcosC=3cosAsinC,求 b 18(12 分)如图,四棱锥 SABCD 中,底面 ABCD 为矩形,SD底面 ABCD,AD=,DC=SD=2,点 M 在侧棱 SC 上,ABM=60(I)证明:M 是侧棱 SC 的中点;()求二面角 SAMB 的大小 19(12 分)甲、乙二人进行一次围棋比赛,约定先胜 3 局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为 0.6,乙获胜的概率为 0.4,各局比赛结果相互独立,已知前 2局中,甲、乙各胜 1 局(I)求甲

6、获得这次比赛胜利的概率;()设 表示从第 3 局开始到比赛结束所进行的局数,求 的分布列及数学期望 20(12 分)在数列an中,a1=1,an+1=(1+)an+(1)设 bn=,求数列bn的通项公式;(2)求数列an的前 n 项和 Sn 21(12 分)如图,已知抛物线 E:y2=x 与圆 M:(x4)2+y2=r2(r0)相交于 A、B、C、D 四个点()求 r 的取值范围;()当四边形 ABCD 的面积最大时,求对角线 AC、BD 的交点 P 的坐标 22(12 分)设函数 f(x)=x3+3bx2+3cx 有两个极值点 x1、x2,且 x11,0,x21,2(1)求 b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:第 3 页(共 3 页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服