ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:146KB ,
资源ID:493901      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/493901.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2017年湖南省株洲市中考数学试卷(学生版).doc)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2017年湖南省株洲市中考数学试卷(学生版).doc

1、2017年湖南省株洲市中考数学试卷一、选择题(每小题3分,满分30分)1(3分)计算a2a4的结果为()Aa2Ba4Ca6Da82(3分)如图示,数轴上点A所表示的数的绝对值为()A2B2C2D以上均不对3(3分)如图示直线l1,l2ABC被直线l3所截,且l1l2,则()A41B49C51D594(3分)已知实数a,b满足a+1b+1,则下列选项错误的为()AabBa+2b+2CabD2a3b5(3分)如图,在ABC中,BACx,B2x,C3x,则BAD()A145B150C155D1606(3分)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A正三角形B正方形C正五边形D正六边

2、形7(3分)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:0010:0010:0011:0014:0015:0015:0016:00进馆人数50245532出馆人数30652845A9:0010:00B10:0011:00C14:0015:00D15:0016:008(3分)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()ABCD9(3分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A一定不是平行四边形B一定不是中心对称图形C可能是轴对称图形D

3、当ACBD时它是矩形10(3分)如图示,若ABC内一点P满足PACPBAPCB,则点P为ABC的布洛卡点三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(ALCrelle 17801855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 18451922)重新发现,并用他的名字命名问题:已知在等腰直角三角形DEF中,EDF90,若点Q为DEF的布洛卡点,DQ1,则EQ+FQ()A5B4CD二、填空题(每小题3分,满分24分)11(3分)如图示在ABC中B 12(3分)分解因式:m3mn2 1

4、3(3分)分式方程0的解为 14(3分)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是 15(3分)如图,已知AM为O的直径,直线BC经过点M,且ABAC,BAMCAM,线段AB和AC分别交O于点D、E,BMD40,则EOM 16(3分)如图示直线yx+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为 17(3分)如图所示是一块含30,60,90的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1(x0)的图象上,顶点B在函数y2(x0)的图象上,ABO30,则 18(3分)如图示二次函数yax2

5、+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(1,0)与点C(x2,0),且与y轴交于点B(0,2),小强得到以下结论:0a2;1b0;c1;当|a|b|时x21;以上结论中正确结论的序号为 三、解答题(本大题共有8个小题,满分66分)19(6分)计算:+20170(1)4sin4520(6分)化简求值:(x)y,其中x2,y21(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行33阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是33阶魔方赛A区域30名爱好者完成时间统计图,求:A区域

6、33阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示)若33阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在33阶魔方赛后进入下一轮角逐的人数若33阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示)22(8分)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF求证:DAEDCF; 求证:ABGCFG23(8分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为其中tan2,无人机的飞行高度AH为500米,桥的长度为1255米求点H到桥左端点P

7、的距离; 若无人机前端点B测得正前方的桥的右端点Q的俯角为30,求这架无人机的长度AB24(8分)如图所示,RtPAB的直角顶点P(3,4)在函数y(x0)的图象上,顶点A、B在函数y(x0,0tk)的图象上,PAy轴,连接OP,OA,记OPA的面积为SOPA,PAB的面积为SPAB,设wSOPASPAB求k的值以及w关于t的表达式; 若用wmax和wmin分别表示函数w的最大值和最小值,令Twmax+a2a,其中a为实数,求Tmin25(10分)如图所示AB为O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BEEF,线段CE交弦AB于点D求证:CEBF; 若BD2,且EA:EB:EC3:1:,求BCD的面积(注:根据圆的对称性可知OCAB)26(12分)已知二次函数yx2+bx+c+1,当b1时,求这个二次函数的对称轴的方程; 若cb22b,问:b为何值时,二次函数的图象与x轴相切?若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1x2,b0,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足,求二次函数的表达式

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服