1、2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1(4分)(2016安徽)2的绝对值是()A2B2C2D2(4分)(2016安徽)计算a10a2(a0)的结果是()Aa5Ba5Ca8Da83(4分)(2016安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A8.362107B83.62106C0.8362108D8.3621084(4分)(2016安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()ABCD5(4分)(2016安徽)方程=3的解是()ABC4D46(4分)(2016安徽)2014年我省财政
2、收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()Ab=a(1+8.9%+9.5%)Bb=a(1+8.9%9.5%)Cb=a(1+8.9%)(1+9.5%)Db=a(1+8.9%)2(1+9.5%)7(4分)(2016安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有() 组别月用水量x(单位:吨)A0x3B3x6C6x9
3、D9x12Ex12A18户B20户C22户D24户8(4分)(2016安徽)如图,ABC中,AD是中线,BC=8,B=DAC,则线段AC的长为()A4B4C6D49(4分)(2016安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()ABCD10(4分)(2016安徽)如图,RtABC中,ABBC,AB=6,BC
4、=4,P是ABC内部的一个动点,且满足PAB=PBC,则线段CP长的最小值为()AB2CD二、填空题(本大题共4小题,每小题5分,满分20分)11(5分)(2016安徽)不等式x21的解集是12(5分)(2016安徽)因式分解:a3a=13(5分)(2016安徽)如图,已知O的半径为2,A为O外一点,过点A作O的一条切线AB,切点是B,AO的延长线交O于点C,若BAC=30,则劣弧的长为14(5分)(2016安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列
5、结论:EBG=45;DEFABG;SABG=SFGH;AG+DF=FG其中正确的是(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15(8分)(2016安徽)计算:(2016)0+tan4516(8分)(2016安徽)解方程:x22x=4四、(本大题共2小题,每小题8分,满分16分)17(8分)(2016安徽)如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边
6、形ABCD18(8分)(2016安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+(2n1)+()+(2n1)+5+3+1=五、(本大题共2小题,每小题10分,满分20分)19(10分)(2016安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得CAB=90,DAB=30,再沿AB方向前进20米到达点E(点E在线段AB上),测得DEB=60,求C、D两点间的距离20(10分)(2016安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于
7、点A(4,3),与y轴的负半轴交于点B,且OA=OB(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标六、(本大题满分12分)21(12分)(2016安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率七、(本大题满分12分)22(12分)
8、(2016安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0)(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2x6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值八、(本大题满分14分)23(14分)(2016安徽)如图1,A,B分别在射线OA,ON上,且MON为钝角,现以线段OA,OB为斜边向MON的外侧作等腰直角三角形,分别是OAP,OBQ,点C,D,E分别是OA,OB,AB的中点(1)求证:PCEEDQ;(2)延长PC,QD交于点R如图1,若MON=150,求证:ABR为等边三角形;如图3,若ARBP
9、EQ,求MON大小和的值2016年安徽省中考数学试卷参考答案一、选择题1B2C3A4C5D6C7D8B9A10B二、填空题11x312 a(a+1)(a1)13 14解:BCE沿BE折叠,点C恰落在边AD上的点F处,1=2,CE=FE,BF=BC=10,在RtABF中,AB=6,BF=10,AF=8,DF=ADAF=108=2,设EF=x,则CE=x,DE=CDCE=6x,在RtDEF中,DE2+DF2=EF2,(6x)2+22=x2,解得x=,ED=,ABG沿BG折叠,点A恰落在线段BF上的点H处,3=4,BH=BA=6,AG=HG,2+3=ABC=45,所以正确;HF=BFBH=106=4
10、,设AG=y,则GH=y,GF=8y,在RtHGF中,GH2+HF2=GF2,y2+42=(8y)2,解得y=3,AG=GH=3,GF=5,A=D,=,=,ABG与DEF不相似,所以错误;SABG=63=9,SFGH=GHHF=34=6,SABG=SFGH,所以正确;AG+DF=3+2=5,而GF=5,AG+DF=GF,所以正确故答案为三、15(2016)0+tan45=12+1=016解:配方x22x+1=4+1(x1)2=5x=1x1=1+,x2=1四、17解:(1)点D以及四边形ABCD另两条边如图所示(2)得到的四边形ABCD如图所示18 2n+1;2n2+2n+1五、19解:过点D作
11、l1的垂线,垂足为F,DEB=60,DAB=30,ADE=DEBDAB=30,ADE为等腰三角形,DE=AE=20,在RtDEF中,EF=DEcos60=20=10,DFAF,DFB=90,ACDF,由已知l1l2,CDAF,四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m20解:(1)把点A(4,3)代入函数y=得:a=34=12,y=OA=5,OA=OB,OB=5,点B的坐标为(0,5),把B(0,5),A(4,3)代入y=kx+b得:解得:y=2x5(2)点M在一次函数y=2x5上,设点M的坐标为(x,2x5),MB=MC,解得:x=2.5,点M的坐标为
12、(2.5,0)六、21解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率=七、22解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CEAD,CFx轴,垂足分别为E,F,SOAD=ODAD=24=4;SACD=ADCE=4(x2)=2x4;SBCD=BDCF=4(x2+3x)=x2+6x,则S=SOAD+SACD+SBCD=4+2x
13、4x2+6x=x2+8x,S关于x的函数表达式为S=x2+8x(2x6),S=x2+8x=(x4)2+16,当x=4时,四边形OACB的面积S有最大值,最大值为16八、23(1)证明:点C、D、E分别是OA,OB,AB的中点,DE=OC,OC,CE=OD,CEOD,四边形ODEC是平行四边形,OCE=ODE,OAP,OBQ是等腰直角三角形,PCO=QDO=90,PCE=PCO+OCE=QDO=ODQ=EDQ,PC=AO=OC=ED,CE=OD=OB=DQ,在PCE与EDQ中,PCEEDQ;(2)如图2,连接RO,PR与QR分别是OA,OB的垂直平分线,AP=OR=RB,ARC=ORC,ORQ=BRO,RCO=RDO=90,COD=150,CRD=30,ARB=60,ARB是等边三角形;由(1)得,EQ=EP,DEQ=CPE,PEQ=CEDCEPDEQ=ACECEPCPE=ACERCE=ACR=90,PEQ是等腰直角三角形,ARBPEQ,ARB=PEQ=90,OCR=ODR=90,CRD=ARB=45,MON=135,此时P,O,B在一条直线上,PAB为直角三角形,且APB=90,AB=2PE=2PQ=PQ,=12
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100