1、2018年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1(3分)的相反数是()ABCD2(3分)下列运算结果正确的是()A3a32a26a6B(2a)24a2Ctan45Dcos303(3分)函数y中自变量x的取值范围是()Ax1且x1Bx1Cx1D1x14(3分)如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D805(3分)如图,在RtABC中,ACB90,CD为AB边上的高,CE为AB边上的中线,AD2,CE5,则CD()A2B3C4D26(
2、3分)当axa+1时,函数yx22x+1的最小值为1,则a的值为()A1B2C0或2D1或2二、填空题(本题共8小题,每题小3分,共24分7(3分)实数16800000用科学记数法表示为 8(3分)因式分解:x39x 9(3分)化简(1)0+()2+ 10(3分)若a,则a2+值为 11(3分)如图,ABC内接于O,AB为O的直径,CAB60,弦AD平分CAB,若AD6,则AC 12(3分)一个三角形的两边长分别为3和6,第三边长是方程x210x+210的根,则三角形的周长为 13(3分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正
3、好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为 cm(杯壁厚度不计)14(3分)在4、2,1、2四个数中、随机取两个数分别作为函数yax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为 三、解答题(本题共10题,满分78分(x-2)815(5分)求满足不等式组的所有整数解16(6分)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克17(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某
4、校就“中华文化我传承地方戏曲进校园”的喜爱情况进行了随机调查对收集的信息进行统计,绘制了下面两幅尚不完整的统计图请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”(1)被调查的总人数是 人,扇形统计图中C部分所对应的扇形圆心角的度数为 ;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有 人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率18(7分)如图,AD是O的直径,AB为O的弦,OPAD,OP与AB的
5、延长线交于点P,过B点的切线交OP于点C(1)求证:CBPADB(2)若OA2,AB1,求线段BP的长19(6分)如图,反比例函数y(x0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标20(8分)如图,在ABCD中,分别以边BC,CD作等腰BCF,CDE,使BCBF,CDDE,CBFCDE,连接AF,AE(1)求证ABFEDA;(2)延长AB与CF相交于G若AFAE,求证BFBC21(7分)如图,在大楼AB正前方
6、有一斜坡CD,坡角DCE30,楼高AB60米,在斜坡下的点C处测得楼顶B的仰角为60,在斜坡上的D处测得楼顶B的仰角为45,其中点A,C,E在同一直线上(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度22(8分)已知直线l:ykx+1与抛物线yx24x(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k2时,求OAB的面积23(9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y,每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112z1918171615141
7、31211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)当月销售量y(万件)当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24(14分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,C120,边长OA8点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边ABBCCO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,
8、点N运动到原点O时,M和N两点同时停止运动(1)当t2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设APN的面积为S,求S与t的函数关系式及t的取值范围2018年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数【解答】解:的相反数是故选:C【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数2【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算【解答】解:A、原式6a5,故本选项错误;
9、B、原式4a2,故本选项错误;C、原式1,故本选项错误;D、原式,故本选项正确故选:D【点评】考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题3【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分【解答】解:根据题意得到:,解得x1且x1,故选:A【点评】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数易错易混点:学生易对二次根式的非负性和分母不等于0混淆4【分析】根据线段垂直平分线的性质得到DA
10、DC,根据等腰三角形的性质得到DACC,根据三角形内角和定理求出BAC,计算即可【解答】解:DE是AC的垂直平分线,DADC,DACC25,B60,C25,BAC95,BADBACDAC70,故选:B【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键5【分析】根据直角三角形的性质得出AECE5,进而得出DE3,利用勾股定理解答即可【解答】解:在RtABC中,ACB90,CE为AB边上的中线,CE5,AECE5,AD2,DE3,CD为AB边上的高,在RtCDE中,CD,故选:C【点评】此题考查直角三角形的性质,关键是根据直
11、角三角形的性质得出AECE56【分析】利用二次函数图象上点的坐标特征找出当y1时x的值,结合当axa+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论【解答】解:当y1时,有x22x+11,解得:x10,x22当axa+1时,函数有最小值1,a2或a+10,a2或a1,故选:D【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y1时x的值是解题的关键二、填空题(本题共8小题,每题小3分,共24分7【分析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【解答】解:168000001.68
12、107故答案为:1.68107【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键8【分析】先提取公因式x,再利用平方差公式进行分解【解答】解:x39x,x(x29),x(x+3)(x3)【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底9【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案【解答】解:原式1+4331故答案为:1【点评】此题主要考查了实数运算,正确化简各数是解题关键10【分析】根据分式的运算法则即可求出答案【解答】解:a(a)26a22+6
13、a2+8故答案为:8【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型11【分析】连接BD在RtADB中,求出AB,再在RtACB中求出AC即可解决问题;【解答】解:连接BDAB是直径,CD90,CAB60,AD平分CAB,DAB30,ABADcos304,ACABcos602,故答案为2【点评】本题考查三角形的外接圆与外心,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题12【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长【解答】解:解方程x210x+210得x13、x27,3第三边的边长9,第三边的边长为
14、7这个三角形的周长是3+6+716故答案为:16【点评】本题考查了解一元二次方程和三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和13【分析】将杯子侧面展开,建立A关于EF的对称点A,根据两点之间线段最短可知AB的长度即为所求【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A,连接AB,则AB即为最短距离,AB20(cm)故答案为20【点评】本题考查了平面展开最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键同时也考查了同学们的创造性思维能力14【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a0,b0
15、的结果数,然后根据概率公式求解【解答】解:画树状图为:共有12种等可能的结果数,满足a0,b0的结果数为4,但a1,b2时,0;a2,b2时,0,抛物线不过第四象限,所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,所以该二次函数图象恰好经过第一、二、四象限的概率故答案为【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了二次函数的性质三、解答题(本题共10题,满分78分(x-2)815【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可【解答】解:解不等式x3(
16、x2)8,得:x1,解不等式x13x,得:x2,则不等式组的解集为1x2,所以不等式组的整数解为1、0、1【点评】本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值一般方法是先解不等式组,再根据解集求出特殊值16【分析】订购了A型粽子x千克,B型粽子y千克根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得答:订购了A型粽子40千克,B型粽子60千克【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,
17、找出合适的等量关系,列出方程组再求解17【分析】(1)由A类别人数及其所占百分比可得总人数,用360乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率【解答】解:(1)被调查的总人数为510%50人,扇形统计图中C部分所对应的扇形圆心角的度数为360216,故答案为:50、216;(2)B类别人数为50(5+30+5)10人,补全图形如下:(3)估计该校学生中A类有180010%180人,故答案为:180;(4)列表如下:女1女2女3男1男2女1女
18、2女1女3女1男1女1男2女1女2女1女2女3女2男1女2男2女2女3女1女3女2女3男1女3男2女3男1女1男1女2男1女3男1男2男1男2女1男2女2男2女3男2男1男2所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,被抽到的两个学生性别相同的概率为【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用解题时注意:概率所求情况数与总情况数之比一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确18【分析】(1)连接OB,如图,根据圆周角定理得到ABD90,再根据切线的性质得到OBC90,然后利用等量代换进行证明;(2)证
19、明AOPABD,然后利用相似比求BP的长【解答】(1)证明:连接OB,如图,AD是O的直径,ABD90,A+ADB90,BC为切线,OBBC,OBC90,OBA+CBP90,而OAOB,AOBA,CBPADB;(2)解:OPAD,POA90,P+A90,PD,AOPABD,即,BP7【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和相似三角形的判定与性质19【分析】(1)将A点的坐标代入反比例函数y求得k的值,然后将x6代入反比例函数解析式求得相应的y的值,即得点B的坐标;(2)使得以A、B、C、D为顶点的四
20、边形为平行四边形,如图所示,找出满足题意D的坐标即可【解答】解:(1)把点A(3,4)代入y(x0),得kxy3412,故该反比例函数解析式为:y点C(6,0),BCx轴,把x6代入反比例函数y,得y2则B(6,2)综上所述,k的值是12,B点的坐标是(6,2)(2)如图,当四边形ABCD为平行四边形时,ADBC且ADBCA(3,4)、B(6,2)、C(6,0),点D的横坐标为3,yAyDyByC即4yD20,故yD2所以D(3,2)如图,当四边形ACBD为平行四边形时,ADCB且ADCBA(3,4)、B(6,2)、C(6,0),点D的横坐标为3,yDyAyByC即yD420,故yD6所以D(
21、3,6)如图,当四边形ACDB为平行四边形时,ACBD且ACBDA(3,4)、B(6,2)、C(6,0),xDxBxCxA即xD663,故xD9yDyByCyA即yD204,故yD2所以D(9,2)综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,2)【点评】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(2)题时,采用了“数形结合”和“分类讨论”的数学思想20【分析】(1)想办法证明:ABDE,FBAD,ABFADE即可解决问题;(2)只要证明FBAD即可解决问题;【解答】(1)证明:四边形ABCD是平行四边形,ABCD,ADB
22、C,ABCADC,BCBF,CDDE,BFAD,ABDE,ADE+ADC+EDC360,ABF+ABC+CBF360,EDCCBF,ADEABF,ABFEDA(2)证明:延长FB交AD于HAEAF,EAF90,ABFEDA,EADAFB,EAD+FAH90,FAH+AFB90,AHF90,即FBAD,ADBC,FBBC【点评】本题考查平行四边形的性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,学会添加常用辅助线,属于中考常考题型21【分析】(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)设CD2x,则DEx,CEx,构建方程即
23、可解决问题;【解答】解:(1)在直角ABC中,BAC90,BCA60,AB60米,则AC20(米)答:坡底C点到大楼距离AC的值是20米(2)设CD2x,则DEx,CEx,在RtBDF中,BDF45,BFDF,60x20+x,x4060,CD2x80120,CD的长为(80120)米【点评】此题考查了解直角三角形仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键22【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A、B的坐标,再求出直线y2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案【解答】解:(1)联立化简可得:x2(4+k)x10,(4+k)2+4
24、0,故直线l与该抛物线总有两个交点;(2)当k2时,y2x+1过点A作AFx轴于F,过点B作BEx轴于E,联立解得:或A(1,21),B(1+,12)AF21,BE1+2易求得:直线y2x+1与x轴的交点C为(,0)OCSAOBSAOC+SBOCOCAF+OCBEOC(AF+BE)(21+1+2)【点评】本题考查二次函数的综合问题,涉及解一元二次方程组,根的判别式,三角形的面积公式等知识,综合程度较高23【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决;(2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本
25、题【解答】解;(1)当1x9时,设每件产品利润z(元)与月份x(月)的关系式为zkx+b,得,即当1x9时,每件产品利润z(元)与月份x(月)的关系式为zx+20,当10x12时,z10,由上可得,z;(2)当1x8时,w(x+4)(x+20)x2+16x+80,当x9时,w(9+20)(9+20)121,当10x12时,w(x+20)1010x+200,由上可得,w;(3)当1x8时,wx2+16x+80(x8)2+144,当x8时,w取得最大值,此时w144;当x9时,w121,当10x12时,w10x+200,则当x10时,w取得最大值,此时w100,由上可得,当x为8时,月利润w有最大
26、值,最大值144万元【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答24【分析】(1)解直角三角形求出PM,QM即可解决问题;(2)根据点P、N的路程之和24,构建方程即可解决问题,;(3)分四种情形考虑问题即可解决问题;【解答】解:(1)当t2时,OM2,在RtOPM中,POM60,PMOMtan602,在RtOMQ中,QOM30,QMOMtan30,PQPMQM2(2)由题意:8+(t4)+2t24,解得t(3)当0t4时,S2t44t当4t时,S8(t4)(2t8)4406t当t8时S(t4)+(2t8)846t40当8t12时,SS菱形ABCOSAONSABPSPNC32(242t)48(t4)4(t4)(2t16)t2+12t56【点评】本题考查四边形综合题、解直角三角形、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/9/5 17:28:26;用户:18366185883;邮箱:18366185883;学号:22597006第19页(共19页)
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100