ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:411KB ,
资源ID:492458      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/492458.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2011年北京高考文科数学试题及答案.doc)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2011年北京高考文科数学试题及答案.doc

1、 2011年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1已知全集U=R,集合P=xx21,那么A(-, -1 B1, +) C-1,1 D(-,-1 1,+)2复数Ai B-i C D3如果那么 Ay x1 Bx y1 C1 xy D1yx4若p是真命题,q是假命题,则Apq是真命题 Bpq是假命题 Cp是真命题 Dq是真命题5某四棱锥的三视

2、图如图所示,该四棱锥的表面积是A32 B16+16 C48 D16+32 6执行如图所示的程序框图,若输入A的值为2,则输入的P值为A2B3C4D57某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与仓储费用之和最小,每批应生产产品A60件B80件C100件D120件8已知点A(0,2),B(2,0)若点C在函数y = x的图像上,则使得ABC的面积为2的点C的个数为 A4 B3 C2 D1第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9在中.若b=5,sinA

3、=,则a=_.10已知双曲线(0)的一条渐近线的方程为,则= .11已知向量a=(,1),b=(0,-1),c=(k,).若a-2b与c共线,则k=_.12在等比数列an中,a1=,a4=4,则公比q=_;a1+a2+an= _.13已知函数若关于x 的方程f(x)=k有两个不同的实根,则实数k的取值范围是_14设A(0,0),B(4,0),C(t+4,3),D(t,3)(tR).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)= N(t)的所有可能取值为 三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15(本小题

4、共13分)已知函数.()求的最小正周期:()求在区间上的最大值和最小值.16(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差其中为的平均数)17(本小题共14分)如图,在四面体PABC中,PCAB,PABC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.()求证:DE平面BCP; ()求证:四边形DEFG为矩形;()是否存在点Q,到四面体PABC六条棱的中点的距离

5、相等?说明理由.18(本小题共13分)已知函数.()求的单调区间;()求在区间0,1上的最小值.19(本小题共14分)已知椭圆的离心率为,右焦点为(,0),斜率为I的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(I)求椭圆G的方程;(II)求的面积.20(本小题共13分)若数列满足,则称为数列,记.()写出一个E数列A5满足;()若,n=2000,证明:E数列是递增数列的充要条件是=2011;()在的E数列中,求使得=0成立得n的最小值.参考答案一、选择题(共8小题,每小题5分,共40分)(1)D (2)A (3)D (4)D(5)B (6)C (7)B (8)

6、A二、填空题(共6小题,每小题5分,共30分)(9) (10)2(11)1 (12)2 (13)(0,1) (14)6 6,7,8,三、解答题(共6小题,共80分)(15)(共13分)解:()因为所以的最小正周期为()因为于是,当时,取得最大值2;当取得最小值1(16)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为方差为()记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是

7、:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A2,B2),(A3,B3),(A1,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4),用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为(17)(共14分)证明:()因为D,E分别为AP,AC的中点,所以DE/PC。又因为DE平面BCP,所以DE/平面BCP。()因为D,E,F,G分别为AP,AC,BC,PB的中点,

8、所以DE/PC/FG,DG/AB/EF。所以四边形DEFG为平行四边形,又因为PCAB,所以DEDG,所以四边形DEFG为矩形。()存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点由()知,DFEG=Q,且QD=QE=QF=QG=EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。与()同理,可证四边形MENG为矩形,其对角线点为EG的中点Q,且QM=QN=EG,所以Q为满足条件的点.(18)(共13分)解:()令,得与的情况如下:x()(0+所以,的单调递减区间是();单调递增区间是()当,即时,函数在0,1上单调递增,所以(x)在区间0,1上的最小值为当时,由

9、()知上单调递减,在上单调递增,所以在区间0,1上的最小值为;当时,函数在0,1上单调递减,所以在区间0,1上的最小值为(19)(共14分)解:()由已知得解得又所以椭圆G的方程为()设直线l的方程为由得设A、B的坐标分别为AB中点为E,则因为AB是等腰PAB的底边,所以PEAB.所以PE的斜率解得m=2。此时方程为解得所以所以|AB|=.此时,点P(3,2)到直线AB:的距离所以PAB的面积S=(20)(共13分)解:()0,1,0,1,0是一具满足条件的E数列A5.(答案不唯一,0,1,0,1,0;0,1,0,1,2;0,1,0,1,2;0,1,0,1,2,0,1,0,1,0都是满足条件的E的数列A5)()必要性:因为E数列A5是递增数列,所以所以A5是首项为12,公差为1的等差数列所以a2000=12+(20001)1=2011充分性,由于a2000a10001,a2000a10001a2a11所以a2000at19999,即a2000a1+1999又因为a1=12,a2000=2011,所以a2000=a1+1999故是递增数列综上,结论得证.()对首项为4的E数列Ak,由于所以所以对任意的首项为4的E数列Am,若则必有.又的E数列所以n是最小值是9.9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服