ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:390.31KB ,
资源ID:491960      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/491960.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版).doc)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版).doc

1、 2014年全国统一高考数学试卷(文科)(新课标Ⅱ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=(  ) A.∅ B.{2} C.{0} D.{﹣2} 2.(5分)=(  ) A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则(  ) A.p是q的充分必要条件 B.p是q的充分条件,但不是q的必要条件 C.p是q的必要条件

2、但不是q的充分条件 D.p既不是q的充分条件,也不是q的必要条件 4.(5分)设向量,满足|+|=,|﹣|=,则•=(  ) A.1 B.2 C.3 D.5 5.(5分)等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=(  ) A.n(n+1) B.n(n﹣1) C. D. 6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为(  ) A. B. C. D. 7.(5分)正三棱柱ABC

3、﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为(  ) A.3 B. C.1 D. 8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=(  ) A.4 B.5 C.6 D.7 9.(5分)设x,y满足约束条件,则z=x+2y的最大值为(  ) A.8 B.7 C.2 D.1 10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=(  ) A. B.6 C.12 D.7 11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是(

4、  ) A.(﹣∞,﹣2] B.(﹣∞,﹣1] C.[2,+∞) D.[1,+∞) 12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是(  ) A.[﹣1,1] B.[﹣,] C.[﹣,] D.[﹣,] 二、填空题:本大题共4小题,每小题5分. 13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为   . 14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为   . 15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f

5、3)=3,则f(﹣1)=   . 16.(5分)数列{an}满足an+1=,a8=2,则a1=   .   三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2. (1)求C和BD; (2)求四边形ABCD的面积. 18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离. 19.(12分)某市为了

6、考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图: (Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价. 20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N. (1)若直线MN的斜率为,求C的离心率; (2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

7、 21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2. (Ⅰ)求a; (Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.   三、选修4-1:几何证明选讲 22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明: (Ⅰ)BE=EC; (Ⅱ)AD•DE=2PB2.

8、  四、选修4-4,坐标系与参数方程 23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,] (Ⅰ)求C的参数方程; (Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.   五、选修4-5:不等式选讲 24.设函数f(x)=|x+|+|x﹣a|(a>0). (Ⅰ)证明:f(x)≥2; (Ⅱ)若f(3)<5,求a的取值范围.   2014年全

9、国统一高考数学试卷(文科)(新课标Ⅱ) 参考答案与试题解析   一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=(  ) A.∅ B.{2} C.{0} D.{﹣2} 【考点】1E:交集及其运算.菁优网版权所有 【专题】5J:集合. 【分析】先解出集合B,再求两集合的交集即可得出正确选项. 【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2}, ∴A∩B={2}. 故选:B. 【点评】本题考查交的运算,理解好交的

10、定义是解答的关键.   2.(5分)=(  ) A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 【考点】A5:复数的运算.菁优网版权所有 【专题】5N:数系的扩充和复数. 【分析】分子分母同乘以分母的共轭复数1+i化简即可. 【解答】解:化简可得====﹣1+2i 故选:B. 【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.   3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则(  ) A.p是q的充分必要条件 B.p是q的充分条件,但不是q的必要条

11、件 C.p是q的必要条件,但不是q的充分条件 D.p既不是q的充分条件,也不是q的必要条件 【考点】29:充分条件、必要条件、充要条件.菁优网版权所有 【专题】5L:简易逻辑. 【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论. 【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立. 根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立, 故p是q的必要条件,但不是q的充分条件, 故选:C. 【点评】本题主要

12、考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.   4.(5分)设向量,满足|+|=,|﹣|=,则•=(  ) A.1 B.2 C.3 D.5 【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有 【专题】5A:平面向量及应用. 【分析】将等式进行平方,相加即可得到结论. 【解答】解:∵|+|=,|﹣|=, ∴分别平方得+2•+=10,﹣2•+=6, 两式相减得4•=10﹣6=4, 即•=1, 故选:A. 【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.   5.(5分)等差数列{

13、an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=(  ) A.n(n+1) B.n(n﹣1) C. D. 【考点】83:等差数列的性质.菁优网版权所有 【专题】54:等差数列与等比数列. 【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得. 【解答】解:由题意可得a42=a2•a8, 即a42=(a4﹣4)(a4+8), 解得a4=8, ∴a1=a4﹣3×2=2, ∴Sn=na1+d, =2n+×2=n(n+1), 故选:A. 【点评】本题考查等差数列的性质和求和公式,属基础题.   6.(5分)如

14、图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为(  ) A. B. C. D. 【考点】L!:由三视图求面积、体积.菁优网版权所有 【专题】5F:空间位置关系与距离. 【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可. 【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4, 组合体体积是:32π•2+22π•4=34π. 底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×

15、6=54π 切削掉部分的体积与原来毛坯体积的比值为:=. 故选:C. 【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.   7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为(  ) A.3 B. C.1 D. 【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有 【专题】5F:空间位置关系与距离. 【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积. 【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点, ∴

16、底面B1DC1的面积:=, A到底面的距离就是底面正三角形的高:. 三棱锥A﹣B1DC1的体积为:=1. 故选:C. 【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.   8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=(  ) A.4 B.5 C.6 D.7 【考点】EF:程序框图.菁优网版权所有 【专题】5K:算法和程序框图. 【分析】根据条件,依次运行程序,即可得到结论. 【解答】解:若x=t=2, 则第一次循环,1≤2成立,则M=,S=2+3=5,k=2, 第二次循环,2≤2成立,则M=,S=2+5=7

17、k=3, 此时3≤2不成立,输出S=7, 故选:D. 【点评】本题主要考查程序框图的识别和判断,比较基础.   9.(5分)设x,y满足约束条件,则z=x+2y的最大值为(  ) A.8 B.7 C.2 D.1 【考点】7C:简单线性规划.菁优网版权所有 【专题】59:不等式的解法及应用. 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值. 【解答】解:作出不等式对应的平面区域, 由z=x+2y,得y=﹣, 平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大. 由,得, 即A(3,2), 此时z

18、的最大值为z=3+2×2=7, 故选:B. 【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.   10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=(  ) A. B.6 C.12 D.7 【考点】K8:抛物线的性质.菁优网版权所有 【专题】5D:圆锥曲线的定义、性质与方程. 【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|. 【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣. 则过抛物线y2=3x的焦点F且

19、倾斜角为30°的直线方程为y=tan30°(x﹣)=(x﹣). 代入抛物线方程,消去y,得16x2﹣168x+9=0. 设A(x1,y1),B(x2,y2) 则x1+x2=, 所以|AB|=x1++x2+=++=12 故选:C. 【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.   11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是(  ) A.(﹣∞,﹣2] B.(﹣∞,﹣1] C.[2,+∞) D.[1,+∞) 【考点】6B:利用导数研究函数的单调性.菁优网版权所有 【专

20、题】38:对应思想;4R:转化法;51:函数的性质及应用. 【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可. 【解答】解:f′(x)=k﹣, ∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增, ∴f′(x)≥0在区间(1,+∞)上恒成立. ∴k≥, 而y=在区间(1,+∞)上单调递减, ∴k≥1. ∴k的取值范围是:[1,+∞). 故选:D. 【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.   12.(5分)设点M(x0,1),若在圆

21、O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是(  ) A.[﹣1,1] B.[﹣,] C.[﹣,] D.[﹣,] 【考点】JE:直线和圆的方程的应用.菁优网版权所有 【专题】5B:直线与圆. 【分析】根据直线和圆的位置关系,利用数形结合即可得到结论. 【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°, 则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°, 而当MN与圆相切时∠OMN取得最大值, 此时MN=1, 图中只有M′到M″之间的区域满足MN=1, ∴x0的取值

22、范围是[﹣1,1]. 故选:A. 【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.   二、填空题:本大题共4小题,每小题5分. 13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为  . 【考点】C8:相互独立事件和相互独立事件的概率乘法公式.菁优网版权所有 【专题】5I:概率与统计. 【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率. 【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运

23、动服的选法共有3种, 故他们选择相同颜色运动服的概率为 =, 故答案为:. 【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.   14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为 1 . 【考点】GP:两角和与差的三角函数;HW:三角函数的最值.菁优网版权所有 【专题】56:三角函数的求值;57:三角函数的图像与性质. 【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值. 【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx =sinxcosφ+sinφcosx﹣2sinφcosx =sinxcosφ﹣sinφ

24、cosx =sin(x﹣φ)≤1. 所以函数的最大值为1. 故答案为:1. 【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.   15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3 . 【考点】3K:函数奇偶性的性质与判断.菁优网版权所有 【专题】51:函数的性质及应用. 【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论. 【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称, 所以f(2+x)=f(2﹣x)=f(x﹣2), 即f(x+4)=f(x), 则f(

25、﹣1)=f(﹣1+4)=f(3)=3, 法2:因为函数y=f(x)的图象关于直线x=2对称, 所以f(1)=f(3)=3, 因为f(x)是偶函数, 所以f(﹣1)=f(1)=3, 故答案为:3. 【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.   16.(5分)数列{an}满足an+1=,a8=2,则a1=  . 【考点】8H:数列递推式.菁优网版权所有 【专题】11:计算题. 【分析】根据a8=2,令n=7代入递推公式an+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.

26、 【解答】解:由题意得,an+1=,a8=2, 令n=7代入上式得,a8=,解得a7=; 令n=6代入得,a7=,解得a6=﹣1; 令n=5代入得,a6=,解得a5=2; … 根据以上结果发现,求得结果按2,,﹣1循环, ∵8÷3=2…2,故a1= 故答案为:. 【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.   三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2. (1)求C和BD; (2)求四边形ABCD的面积. 【考点】HP:正弦

27、定理;HR:余弦定理.菁优网版权所有 【专题】56:三角函数的求值. 【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长; (2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积. 【解答】解:(1)在△BCD中,BC=3,CD=2, 由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①, 在△ABD中

28、AB=1,DA=2,A+C=π, 由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②, 由①②得:cosC=, 则C=60°,BD=; (2)∵cosC=,cosA=﹣, ∴sinC=sinA=, 则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2. 【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.   18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设A

29、P=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离. 【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.菁优网版权所有 【专题】5F:空间位置关系与距离. 【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC; (Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可. 【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO, ∵ABCD是矩形, ∴O为BD的中点 ∵E为PD的中

30、点, ∴EO∥PB. EO⊂平面AEC,PB⊄平面AEC ∴PB∥平面AEC; (Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=, ∴V==, ∴AB=,PB==. 作AH⊥PB交PB于H, 由题意可知BC⊥平面PAB, ∴BC⊥AH, 故AH⊥平面PBC. 又在三角形PAB中,由射影定理可得: A到平面PBC的距离. 【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.   19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图

31、 (Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价. 【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.菁优网版权所有 【专题】5I:概率与统计. 【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找, (Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了. (Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可. 【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小

32、到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75. 50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67. (Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为, 故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16, (Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较

33、高、评价较为一致,对乙部门的评价较低、评价差异较大. 【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.   20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N. (1)若直线MN的斜率为,求C的离心率; (2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b. 【考点】K4:椭圆的性质.菁优网版权所有 【专题】5E:圆锥曲线中的最值与范围问题. 【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心

34、率; (2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论. 【解答】解:(1)∵M是C上一点且MF2与x轴垂直, ∴M的横坐标为c,当x=c时,y=,即M(c,), 若直线MN的斜率为, 即tan∠MF1F2=, 即b2==a2﹣c2, 即c2+﹣a2=0, 则, 即2e2+3e﹣2=0 解得e=或e=﹣2(舍去), 即e=. (Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点, 设M(c,y),(y>0), 则,即,解得y=, ∵OD是△MF1F2的中

35、位线, ∴=4,即b2=4a, 由|MN|=5|F1N|, 则|MF1|=4|F1N|, 解得|DF1|=2|F1N|, 即 设N(x1,y1),由题意知y1<0, 则(﹣c,﹣2)=2(x1+c,y1). 即,即 代入椭圆方程得, 将b2=4a代入得, 解得a=7,b=. 【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.   21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2. (Ⅰ)求a; (Ⅱ)证明:当k<1时

36、曲线y=f(x)与直线y=kx﹣2只有一个交点. 【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.菁优网版权所有 【专题】53:导数的综合应用. 【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a; (Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论. 【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a; 则y=f(x)在点(0,2)处的切线方程为y=ax+2, ∵切线与x轴交点的横坐标为﹣2, ∴f(﹣2)=﹣2a+2=0, 解得a=1. (Ⅱ)当a=1时,f(x)=x

37、3﹣3x2+x+2, 设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4, 由题设知1﹣k>0, 当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4, 当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x). 则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增, ∴在x=2时,h(x)取得极小值h(2)=0, g(﹣1)=k﹣1,g(0)=4, 则g(x)=0在(﹣∞,0]有唯一实根. ∵g(x)>h(x)≥h(2)=0, ∴g(x)=0在(0

38、∞)上没有实根. 综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点. 【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.   三、选修4-1:几何证明选讲 22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明: (Ⅰ)BE=EC; (Ⅱ)AD•DE=2PB2. 【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.菁优网版权所有 【专题】17:选作题;5Q:立体几何.

39、分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC; (Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2. 【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°, ∵PC=2PA,D为PC的中点, ∴PA=PD, ∴∠PAD=∠PDA, ∵∠PDA=∠CDE, ∴∠OEA+∠CDE=∠OAE+∠PAD=90°, ∴OE⊥BC, ∴E是的中点, ∴BE=EC; (Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C, ∴PA2=PB•PC, ∵PC=2PA, ∴PA=2PB,

40、 ∴PD=2PB, ∴PB=BD, ∴BD•DC=PB•2PB, ∵AD•DE=BD•DC, ∴AD•DE=2PB2. 【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.   四、选修4-4,坐标系与参数方程 23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,] (Ⅰ)求C的参数方程; (Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标. 【考点】QH:参数方程化成

41、普通方程.菁优网版权所有 【专题】5S:坐标系和参数方程. 【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程. (2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标. 【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1). 可得C的参数方程为(t为参数,0≤t≤π). (2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆, ∵直线CD的斜

42、率与直线l的斜率相等,∴tant=,t=. 故D的直角坐标为,即(,). 【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.   五、选修4-5:不等式选讲 24.设函数f(x)=|x+|+|x﹣a|(a>0). (Ⅰ)证明:f(x)≥2; (Ⅱ)若f(3)<5,求a的取值范围. 【考点】R5:绝对值不等式的解法.菁优网版权所有 【专题】59:不等式的解法及应用. 【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立. (Ⅱ)由f(3)

43、3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求. 【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2, 故不等式f(x)≥2成立. (Ⅱ)∵f(3)=|3+|+|3﹣a|<5, ∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<. 当0<a≤3时,不等式即 6﹣a+<5,即 a2﹣a﹣1>0,求得<a≤3. 综上可得,a的取值范围(,). 【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.   第15页(共15页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服