1、八年级数学下册八年级数学下册(人教版人教版)第十八章 勾股定理 桦甸市第七中学 朱海莹11美丽的勾股树(1)了解勾股定理的文化背景,体验勾)了解勾股定理的文化背景,体验勾股定理的探索过程股定理的探索过程(2)了解利用拼图验证勾股定理的方法)了解利用拼图验证勾股定理的方法(3)利用勾股定理,已知直角三角形的)利用勾股定理,已知直角三角形的两边求第三边的长两边求第三边的长毕达哥拉斯(公元前572-前492年),古希腊著名的哲学家、数学家、天文学家。他在朋友家做客时,发现朋友家用砖铺成的地面中反映了A、B、C三者面积之间的数量关系,进而发现直角三角形三边的某种数量关系AB C 我们也来观察右图的地面
2、你能发现A、B、C面积之间有什么数量关系吗?SA+SB=SC每块砖都是等腰直角三角形哦(图中每个小方格是1个单位面积)1.A中含有_个小方格,即A的面积是 个单位面积B的面积是 个单位面积C的面积是 个单位面积99189探究一:你能发现图1中正方形A、B、C的面积之间有什么数量关系吗?一、实验探究ABC图1结论:图1中三个正方形A,B,C的面积之间的数量关系是:S SA A+S+SB B=S=SC C探究二:S SA A+S+SB B=S=SC C在图2中还成立吗?ABC图2结论:仍然成立。A的面积是 个单位面积B的面积是 个单位面积C的面积是 个单位面积25169 你是怎样得到正方形C的面
3、积的?与同伴交流交流(图中每个小方格是1个单位面积)ABC问题2:式子SA+SB=SC能用直角三角形的三边a、b、c来表示吗?问题4:那么直角三角形三边a、b、c之间的关系式是:abc 至此,我们在网格中验证了:直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积,即SA+SB=SCa2+b2=c2a2+b2=c2问题1:去掉网格结论会改变吗?问题3:去掉正方形结论会改变吗?命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.abc我们猜想:是不是所有的直角三角形都具有这样的结论呢?光靠实验和猜想还不能把问题彻底搞清楚。这就需要我们对一般的直角三角形进行证
4、明下面我们就一起来探究,看一看我国古代数学家们是怎样证明这个命题的二、拼图证明cab1、拿出准备好的四个全等的直角三角形(设、拿出准备好的四个全等的直角三角形(设直角三角形的两条直角边分别为直角三角形的两条直角边分别为a,b,斜边斜边c);2、你能用这四个直角三角形拼成一个正方形、你能用这四个直角三角形拼成一个正方形 吗?拼一拼试试看吗?拼一拼试试看3、你拼的正方形中是否含有以斜边、你拼的正方形中是否含有以斜边c为边为边的正的正方形?方形?4、你能否就你拼出的图说明、你能否就你拼出的图说明a2+b2=c2?cabcabcabcab c2=b2-2ab+a2+2ab=a2+b2a2+b2=c2大
5、正方形的面积可以表示为大正方形的面积可以表示为 ;也可以表示为也可以表示为c2 该图是2002年8月在北京召开的国际数学家大会的会标示意图,取材于我国古代数学著作勾股圆方图。证明证明1:cabcabcabcab(a+b)2=a2+2ab+b2=2ab+c2a2+b2=c2大正方形的面积可以表示为大正方形的面积可以表示为 ;也可以表示为也可以表示为(a+b)2C2证明证明2:C2abcbacABCDE1881年,伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统证法”证明证明3:你能只用这两个你能只用这两个直角三角形直角三角形说明说明
6、a2+b2=c2你能只用这两个你能只用这两个直角三角形直角三角形说明说明a2+b2=c2 现在,我们已经证明了命题1的正确性,在数学上,经过证明被确认为正确的命题叫做定理,所以命题1在我国叫做勾股定理。勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 a2+b2 =c2即:直角三角形两直角边的平方和等于斜边的平方。结论变形:结论变形:c2=a2 +b2abcABCa2=c2b2b2=c2a2 为什么叫勾股定理这个名称呢?原来在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。于是我国古代学者就把直角三角形中较短直角边称为“勾”,较长直角边称为“股”,斜边
7、称为“弦”.由于命题1反映的正好是直角三角形三边的关系,所以叫做勾股定理。勾股国外又叫毕达哥拉斯定理例题:求出下列直角三角形中未知边的长度.解:(1)在RtABC中,由勾股定理得:AB2=AC2+BC2X2=36+64x2=100 x2=62+82x0 y2+52=132 y2=132-52y2=144 y=12(2)在RtABC中,由勾股定理得:AC2+BC2=AB2y0A68xCB5y13CABX=10三、实践应用方法总结:利用勾股定理建立方程.如图如图,一个高一个高3 3 米米,宽宽4 4 米的大门米的大门,需在相对需在相对角的顶点间加一个加固木条角的顶点间加一个加固木条,则木条的长为则
8、木条的长为 ()()A.3 A.3 米米 B.4 B.4 米米 C.5C.5米米 D.6D.6米米CCBA.基础练习基础练习之之出谋划策出谋划策2、学以致用、学以致用:(:(1).求图中字母所代表的正求图中字母所代表的正方形的面积。方形的面积。2480ABB400625 81144A22522522522556568080结论结论:S1+S2+S3+S4=S5+S6=S7=10S5=s1+s2=4S6=s3+s4=6(2)2)、y=0(1)(1)、如图,、如图,受台风麦莎影响,受台风麦莎影响,一棵树在离地面一棵树在离地面4 4米处断裂,米处断裂,树的顶部落在离树跟底部树的顶部落在离树跟底部3
9、3米处,这棵树折断前有多高?米处,这棵树折断前有多高?3、应用知识回归生活4米米3米米如图,大风将一根木制旗如图,大风将一根木制旗杆吹裂,随时都可能倒下,杆吹裂,随时都可能倒下,十分危急。接警后十分危急。接警后“119”119”迅速赶到现场,并决定从迅速赶到现场,并决定从断裂处将旗杆折断。现在断裂处将旗杆折断。现在需要划出一个安全警戒区需要划出一个安全警戒区域,那么你能确定这个安域,那么你能确定这个安全区域的半径至少是多少全区域的半径至少是多少米吗?米吗?(2)、议一议:、议一议:9m24m?如图,将长为如图,将长为1010米的梯子米的梯子ACAC斜靠斜靠 在墙上,在墙上,BCBC长为长为6
10、6米。米。ABC106(1)求梯子上端求梯子上端A到墙的到墙的底端底端B的距离的距离AB。(2)若梯子下部)若梯子下部C向后向后移动移动2米到米到C1点,那么梯点,那么梯子上部子上部A向下移动了多少向下移动了多少米?米?A1C1 2 3.巩固提高巩固提高之之灵活运用灵活运用一个长方形零件(如图)一个长方形零件(如图),根据所给的尺寸根据所给的尺寸(单位单位mm),mm),求两孔中心求两孔中心A A、B B之间的距离之间的距离.AB901604040C解:解:过过A作铅垂线,过作铅垂线,过B作水平线,两线交于点作水平线,两线交于点C,则,则ACB=90,AC=90-40=50(mm)BC=160
11、40=120(mm)由勾股定理有:由勾股定理有:AB2=AC2+BC2=502+1202 =16900(mm2)AB0,AB=130(mm)答:两孔中心答:两孔中心A,B的距离为的距离为130mm.4.应用知识应用知识之学海无涯学海无涯1、本节课我们学到了什么?通过学习,我们知道了著名的勾股定理,掌握了从特殊到一般的探索方法,还学会到了拼图证明的方法。2、学了本节课后我们有什么感想?我们发现有些数学结论就存在于平常的生活中,需要我们用数学的眼光去观察、思考、发现。四、感悟收获1.必做题:课本第70页,习题18.1 第2、3、4题.2.选做题:(1)课本第71页“阅读与思考”,了解勾股定理的多
12、种证法.(2)上网查阅了解勾股定理的有关知识并写一篇小论文.五、课后作业说不定你也可以创造一种新的证明方法呢!只要我们细心观察、认真思考,就可以在生活中发现数学的奇妙,让我们在奇妙的数学世界里,不懈探索、自由翱翔,享受数学带给我们的乐趣吧!3 3、在波平如静的湖面上在波平如静的湖面上,有一朵美丽的红莲有一朵美丽的红莲,它高它高出水面出水面1 1米米 ,一阵大风吹过一阵大风吹过,红莲被吹至一边红莲被吹至一边,花朵花朵齐及水面齐及水面,如果知道红莲移动的水平距离为如果知道红莲移动的水平距离为2 2米米,问问这里水深多少这里水深多少?x+1x+1B BC CA AH H1 12 2?x xx x2
13、2+2+22 2=(x+1)=(x+1)2 2.回归生活回归生活之学以致用学以致用五.课堂检测1、在RtABC中,C=90若a=5,b=12,则c=_;若a=15,c=25,则b=_;若c=61,b=60,则a=_;若ab=34,c=10则SRt ABC=_。2、已知在RtABC中,B=90,a、b、c是ABC的三边,则c=。(已知a、b,求c)a=。(已知b、c,求a)3、直角三角形两直角边长分别为5和12,则它斜边上的高为_。4、.已知一个Rt的两边长分别为3和4,则第三边长的平方是()A、25 B、14C、7D、7或255、等腰三角形底边上的高为8,周长为32,则三角形的面积为()A、5
14、6B、48C、40D、32毕达哥拉斯(公元前572-前492年),古希腊著名的哲学家、数学家、天文学家。相传有一次他在朋友家做客时,发现朋友家用砖铺成的地面中反映了A、B、C三者面积之间的数量关系,进而发现直角三角形三边的某种数量关系AB C 我们也来观察右图的地面,你能发现A、B、C面积之间有什么数量关系吗?SA+SB=SC每块砖都是等腰直角三角形哦 以直角三角形的两条直角边a、b为边作两个正方形,把两个正方形如图1连在一起,通过剪、拼把它拼成图2的样子。你能做到吗?试试看。赵爽拼图证明法:c c 小组活动:仿照课本中赵爽的思路,只剪两刀,将两个连体正方形,拼成一个新的正方形.图1黄实朱实朱
15、实朱实朱实朱实朱实朱实朱实图2c c黄实朱实朱实朱实朱实朱实朱实朱实朱实b a MNP剪、拼过程展示:“赵爽弦图”黄实朱实朱实朱实朱实朱实朱实朱实朱实c ca ab b“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲。因此,当 2002年第24届国际数学家大会在北京召开时,“赵爽弦图”被选作大会会徽。其他证明方法用四个全等三角形拼图证明。勾股定理是几何学中的明珠,它充满了无穷的魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。有资料表明,关于勾股定理的证明方法已有500余种。练习1
16、图中已知数据表示面积,求表示边的未知数x、y的值.916xy144169看谁算得快练习2:已知S1=1,S2=3,S3=2,S4=4,求S5、S6、S7的值.看谁算得快s s3 31、求下列图中字母所表示的正方形的面积.=625=625225400A22581B=144五、反馈评价2、如图,受台风影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?4米3米3、求下列直角三角形中未知边的长.6x101213x学习目标 1、知识与技能 掌握勾股定理反映的数量关系;会用拼图法、面积法证明勾股定理;在生活实践中学会使用勾股定理。2、过程与方法 通过“观察猜想归纳验证”过
17、程理解勾股定理;学会从特殊到一般的数学思考方法。3、情感态度、价值观 通过实验、猜想、拼图、证明等了解数学知识的发生发展过程,学会合作交流,体验探究乐趣,增强探索意识;感受勾股定理的悠久历史,激发学习热情。ABC你能发现图中的等腰直角三角形有什你能发现图中的等腰直角三角形有什么性质吗?么性质吗?等腰直角三角形:斜边的平方等于两条直等腰直角三角形:斜边的平方等于两条直角边的平方和。角边的平方和。在等腰直角三角形中斜边的平方等于两条在等腰直角三角形中斜边的平方等于两条直角边的平方和,其他的直角三角形中也直角边的平方和,其他的直角三角形中也有这个性质吗?有这个性质吗?一般的直角三角形三边关系一般的直
18、角三角形三边关系(二)总结规律,大胆才猜想(二)总结规律,大胆才猜想(5分钟)分钟)同学们,在我们美丽的地球王国上,原始森林,参天古树带给我们神秘的遐想;绿树成荫,微风习习,给我们以美的享受。你知道吗?在古老的数学王国,有一种树木它很奇妙,生长速度大的惊人,它是什么呢?下面让我们带着这个疑问一同到数学王国去欣赏吧!勾股树1 勾股树2 那么这到底是一种什么样的图形呢?它真的有那么大的魅力吗?下面就让我们通过时光隧道,和古希腊的数学家毕达哥拉斯一起来研究这种图形吧。123123(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2(2)在图)在图2-2中,正中,正方
19、形方形1,2,3中各含中各含有多少个小方格?它有多少个小方格?它们的面积各是多少?们的面积各是多少?(3)你能发现两图)你能发现两图中三个正方形中三个正方形1,2,3的面积之间有什么的面积之间有什么关系吗?关系吗?S1+S2=S3一、一、阅读课本阅读课本 回答问题回答问题213图图2-3(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)S1=S2=S3=32+42=5291625=32=42=52一、一、阅读课本阅读课本 回答问题回答问题 S1+S2=S31 12 23 3a ac cb b 推广推广:一般的直角三角形一般的直角三角形,上述结论成立吗?上述结论成立吗?猜想猜想:两直角边两直角边a、b与斜边与斜边c 之间的关系?之间的关系?a a2 2+b+b2 2=c=c2 2






