ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:365.50KB ,
资源ID:490628      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/490628.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2016年山东省高考数学试卷(理科)word版试卷及解析.doc)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2016年山东省高考数学试卷(理科)word版试卷及解析.doc

1、2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1(5分)(2016山东)若复数z满足2z+=32i,其中i为虚数单位,则z=()A1+2iB12iC1+2iD12i2(5分)(2016山东)设集合A=y|y=2x,xR,B=x|x210,则AB=()A(1,1)B(0,1)C(1,+)D(0,+)3(5分)(2016山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25)

2、,25,27.5),27.5,30根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A56B60C120D1404(5分)(2016山东)若变量x,y满足,则x2+y2的最大值是()A4B9C10D125(5分)(2016山东)一个由半球和四棱锥组成的几何体,其三视图如图所示则该几何体的体积为()A+B+C+D1+6(5分)(2016山东)已知直线a,b分别在两个不同的平面,内则“直线a和直线b相交”是“平面和平面相交”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7(5分)(2016山东)函数f(x)=(sinx+cosx)(cosxsinx)的

3、最小正周期是()ABCD28(5分)(2016山东)已知非零向量,满足4|=3|,cos,=若(t+),则实数t的值为()A4B4CD9(5分)(2016山东)已知函数f(x)的定义域为R当x0时,f(x)=x31;当1x1时,f(x)=f(x);当x时,f(x+)=f(x)则f(6)=()A2B1C0D210(5分)(2016山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质下列函数中具有T性质的是()Ay=sinxBy=lnxCy=exDy=x3二、填空题:本大题共5小题,每小题5分,共25分.11(5分)(2016山东)执行如图的

4、程序框图,若输入的a,b的值分别为0和9,则输出的i的值为12(5分)(2016山东)若(ax2+)5的展开式中x5的系数是80,则实数a=13(5分)(2016山东)已知双曲线E:=1(a0,b0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是14(5分)(2016山东)在1,1上随机地取一个数k,则事件“直线y=kx与圆(x5)2+y2=9相交”发生的概率为15(5分)(2016山东)已知函数f(x)=,其中m0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是三、解答题,:本大题共6小题,共75分.16

5、(12分)(2016山东)在ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+()证明:a+b=2c;()求cosC的最小值17(12分)(2016山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线(I)已知G,H分别为EC,FB的中点,求证:GH平面ABC;()已知EF=FB=AC=2,AB=BC,求二面角FBCA的余弦值18(12分)(2016山东)已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1()求数列bn的通项公式;()令cn=,求数列cn的前n项和Tn19(12分)(2016山东

6、)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响各轮结果亦互不影响假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX20(13分)(2016山东)已知f(x)=a(xlnx)+,aR(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)f(x)+对于任意的x1,2成立21(14分)(2016山东)平面直

7、角坐标系xOy中,椭圆C:+=1(ab0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点(I)求椭圆C的方程;()设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记PFG的面积为S1,PDM的面积为S2,求的最大值及取得最大值时点P的坐标2016年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1(5分)(2016山东)若复数z满足2z+=32i,

8、其中i为虚数单位,则z=()A1+2iB12iC1+2iD12i【考点】复数代数形式的乘除运算菁优网版权所有【专题】计算题;规律型;转化思想;数系的扩充和复数【分析】设出复数z,通过复数方程求解即可【解答】解:复数z满足2z+=32i,设z=a+bi,可得:2a+2bi+abi=32i解得a=1,b=2z=12i故选:B【点评】本题考查复数的代数形式混合运算,考查计算能力2(5分)(2016山东)设集合A=y|y=2x,xR,B=x|x210,则AB=()A(1,1)B(0,1)C(1,+)D(0,+)【考点】并集及其运算菁优网版权所有【专题】计算题;集合思想;数学模型法;集合【分析】求解指数

9、函数的值域化简A,求解一元二次不等式化简B,再由并集运算得答案【解答】解:A=y|y=2x,xR=(0,+),B=x|x210=(1,1),AB=(0,+)(1,1)=(1,+)故选:C【点评】本题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题3(5分)(2016山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A56B

10、60C120D140【考点】频率分布直方图菁优网版权所有【专题】计算题;图表型;概率与统计【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)2.5=0.7,故自习时间不少于22.5小时的频率为:0.7200=140,故选:D【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目4(5分)(2016山东)若变量x,y满足,则x2+y2的最大值是()A4B9C10D12【考点】简单线性规划菁优网版权所有【专题】计算题;对应思想;数形结合法;不

11、等式【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值【解答】解:由约束条件作出可行域如图,A(0,3),C(0,2),|OA|OC|,联立,解得B(3,1),x2+y2的最大值是10故选:C【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题5(5分)(2016山东)一个由半球和四棱锥组成的几何体,其三视图如图所示则该几何体的体积为()A+B+C+D1+【考点】由三视图求面积、体积菁优网版权所有【专题】计算题;空间位置关系与距离;立体几何【分析】由已知中的三视图可得:该几何体上部是一个半球,下

12、部是一个四棱锥,进而可得答案【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=故R=,故半球的体积为:=,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+,故选:C【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键6(5分)(2016山东)已知直线a,b分别在两个不同的平面,内则“直线a和直线b相交”是“平面和平面相交”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断菁优网版

13、权所有【专题】探究型;空间位置关系与距离;简易逻辑【分析】根据空间直线与直线,平面与平面位置关系的几何特征,结合充要条件的定义,可得答案【解答】解:当“直线a和直线b相交”时,“平面和平面相交”成立,当“平面和平面相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面和平面相交”的充分不必要条件,故选:A【点评】本题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题7(5分)(2016山东)函数f(x)=(sinx+cosx)(cosxsinx)的最小正周期是()ABCD2【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法菁优网版权所有【专题】

14、计算题;转化思想;转化法;三角函数的图像与性质【分析】利用和差角及二倍角公式,化简函数的解析式,进而可得函数的周期【解答】解:数f(x)=(sinx+cosx)(cosxsinx)=2sin(x+)2cos(x+)=2sin(2x+),T=,故选:B【点评】本题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档8(5分)(2016山东)已知非零向量,满足4|=3|,cos,=若(t+),则实数t的值为()A4B4CD【考点】平面向量数量积的运算菁优网版权所有【专题】计算题;转化思想;平面向量及应用【分析】若(t+),则(t+)=0,进而可得实数t的值【解答】解:4|=3|,cos,=,

15、(t+),(t+)=t+2=t|+|2=()|2=0,解得:t=4,故选:B【点评】本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题9(5分)(2016山东)已知函数f(x)的定义域为R当x0时,f(x)=x31;当1x1时,f(x)=f(x);当x时,f(x+)=f(x)则f(6)=()A2B1C0D2【考点】抽象函数及其应用菁优网版权所有【专题】综合题;转化思想;综合法;函数的性质及应用【分析】求得函数的周期为1,再利用当1x1时,f(x)=f(x),得到f(1)=f(1),当x0时,f(x)=x31,得到f(1)=2,即可得出结论【解答】解:当x时,f(x

16、+)=f(x),当x时,f(x+1)=f(x),即周期为1f(6)=f(1),当1x1时,f(x)=f(x),f(1)=f(1),当x0时,f(x)=x31,f(1)=2,f(1)=f(1)=2,f(6)=2故选:D【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题10(5分)(2016山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质下列函数中具有T性质的是()Ay=sinxBy=lnxCy=exDy=x3【考点】利用导数研究曲线上某点切线方程菁优网版权所有【专题】转化思想;转化法;函数的性质及应用;导数的

17、概念及应用【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为1,进而可得答案【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为1,当y=sinx时,y=cosx,满足条件;当y=lnx时,y=0恒成立,不满足条件;当y=ex时,y=ex0恒成立,不满足条件;当y=x3时,y=3x20恒成立,不满足条件;故选:A【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档二、填空题:本大题共5

18、小题,每小题5分,共25分.11(5分)(2016山东)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为3【考点】程序框图菁优网版权所有【专题】计算题;操作型;算法和程序框图【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案【解答】解:输入的a,b的值分别为0和9,i=1第一次执行循环体后:a=1,b=8,不满足条件ab,故i=2;第二次执行循环体后:a=3,b=6,不满足条件ab,故i=3;第三次执行循环体后:a=6,b=3,满足条件ab,故输出的i值为:3,故答案为:3【点评】本题考查的知识点是程序框图,当循环次

19、数不多,或有规律可循时,可采用模拟程序法进行解答12(5分)(2016山东)若(ax2+)5的展开式中x5的系数是80,则实数a=2【考点】二项式系数的性质菁优网版权所有【专题】二项式定理【分析】利用二项展开式的通项公式Tr+1=(ax2)5r,化简可得求的x5的系数【解答】解:(ax2+)5的展开式的通项公式Tr+1=(ax2)5r=a5r,令10=5,解得r=2(ax2+)5的展开式中x5的系数是80a3=80,得a=2【点评】考查了利用二项式定理的性质求二项式展开式的系数,属常规题型13(5分)(2016山东)已知双曲线E:=1(a0,b0),若矩形ABCD的四个顶点在E上,AB,CD的

20、中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2【考点】双曲线的简单性质菁优网版权所有【专题】方程思想;分析法;圆锥曲线的定义、性质与方程【分析】可令x=c,代入双曲线的方程,求得y=,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值【解答】解:令x=c,代入双曲线的方程可得y=b=,由题意可设A(c,),B(c,),C(c,),D(c,),由2|AB|=3|BC|,可得2=32c,即为2b2=3ac,由b2=c2a2,e=,可得2e23e2=0,解得e=2(负的舍去)故答案为:2【点评】本题考查双曲线的离心率的求

21、法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题14(5分)(2016山东)在1,1上随机地取一个数k,则事件“直线y=kx与圆(x5)2+y2=9相交”发生的概率为【考点】几何概型菁优网版权所有【专题】计算题;转化思想;综合法;概率与统计【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求【解答】解:圆(x5)2+y2=9的圆心为(5,0),半径为3圆心到直线y=kx的距离为,要使直线y=kx与圆(x5)2+y2=9相交,则3,解得k在区间1,1上随机取一个数k,使直线y=kx与圆(x5)2

22、+y2=9相交相交的概率为=故答案为:【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题15(5分)(2016山东)已知函数f(x)=,其中m0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+)【考点】根的存在性及根的个数判断菁优网版权所有【专题】转化思想;数形结合法;函数的性质及应用【分析】作出函数f(x)=的图象,依题意,可得4mm2m(m0),解之即可【解答】解:当m0时,函数f(x)=的图象如下:xm时,f(x)=x22mx+4m=(xm)2+4mm24mm2,y要使得关于x的方程f(

23、x)=b有三个不同的根,必须4mm2m(m0),即m23m(m0),解得m3,m的取值范围是(3,+),故答案为:(3,+)【点评】本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到4mm2m是难点,属于中档题三、解答题,:本大题共6小题,共75分.16(12分)(2016山东)在ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+()证明:a+b=2c;()求cosC的最小值【考点】三角函数中的恒等变换应用;正弦定理;余弦定理菁优网版权所有【专题】计算题;证明题;综合法;解三角形【分析】()由切化弦公式,带入并整理可得2(sinAcosB+cosA

24、sinB)=sinA+cosB,这样根据两角和的正弦公式即可得到sinA+sinB=2sinC,从而根据正弦定理便可得出a+b=2c;()根据a+b=2c,两边平方便可得出a2+b2+2ab=4c2,从而得出a2+b2=4c22ab,并由不等式a2+b22ab得出c2ab,也就得到了,这样由余弦定理便可得出,从而得出cosC的范围,进而便可得出cosC的最小值【解答】解:()证明:由得:;两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;,带入(1)得:;a

25、+b=2c;()a+b=2c;(a+b)2=a2+b2+2ab=4c2;a2+b2=4c22ab,且4c24ab,当且仅当a=b时取等号;又a,b0;由余弦定理,=;cosC的最小值为【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为,以及三角函数的诱导公式,正余弦定理,不等式a2+b22ab的应用,不等式的性质17(12分)(2016山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线(I)已知G,H分别为EC,FB的中点,求证:GH平面ABC;()已知EF=FB=AC=2,AB=BC,求二面角FBCA的余弦值【考点】二面角的平面角及求法;直

26、线与平面平行的判定菁优网版权所有【专题】证明题;转化思想;向量法;空间位置关系与距离;空间角【分析】()取FC中点Q,连结GQ、QH,推导出平面GQH平面ABC,由此能证明GH平面ABC()由AB=BC,知BOAC,以O为原点,OA为x轴,OB为y轴,OO为z轴,建立空间直角坐标系,利用向量法能求出二面角FBCA的余弦值【解答】证明:()取FC中点Q,连结GQ、QH,G、H为EC、FB的中点,GQ,QH,又EFBO,GQBO,平面GQH平面ABC,GH面GQH,GH平面ABC解:()AB=BC,BOAC,又OO面ABC,以O为原点,OA为x轴,OB为y轴,OO为z轴,建立空间直角坐标系,则A(

27、,0,0),C(2,0,0),B(0,2,0),O(0,0,3),F(0,3),=(2,3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,1,),cos,=二面角FBCA的平面角是锐角,二面角FBCA的余弦值为【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用18(12分)(2016山东)已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1()求数列bn的通项公式;()令cn=,求数列cn的前n项和Tn【考点】数列的求

28、和;数列递推式菁优网版权所有【专题】综合题;转化思想;综合法;等差数列与等比数列【分析】()求出数列an的通项公式,再求数列bn的通项公式;()求出数列cn的通项,利用错位相减法求数列cn的前n项和Tn【解答】解:()Sn=3n2+8n,n2时,an=SnSn1=6n+5,n=1时,a1=S1=11,an=6n+5;an=bn+bn+1,an1=bn1+bn,anan1=bn+1bn12d=6,d=3,a1=b1+b2,11=2b1+3,b1=4,bn=4+3(n1)=3n+1;()cn=6(n+1)2n,Tn=622+322+(n+1)2n,2Tn=6222+323+n2n+(n+1)2n+

29、1,可得Tn=622+22+23+2n(n+1)2n+1=12+66(n+1)2n+1=(6n)2n+1=3n2n+2,Tn=3n2n+2【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题19(12分)(2016山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响各轮结果亦互不影响假设“星队”参加两轮活动,求:(I)“星队”

30、至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列菁优网版权所有【专题】计算题;分类讨论;分类法;概率与统计【分析】(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;(II)由已知可得:“星队”两轮得分之和为X可能为:0,1,2,3,4,6,进而得到X的分布列和数学期望【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对

31、2个,乙猜对2个”三个基本事件,故概率P=+=+=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)=,P(X=1)=2+=,P(X=2)=+=,P(X=3)=2=,P(X=4)=2+=P(X=6)=故X的分布列如下图所示: X 012 3 4 6 P数学期望EX=0+1+2+3+4+6=【点评】本题考查离散型随机变量的分布列和数学期望,属中档题20(13分)(2016山东)已知f(x)=a(xlnx)+,aR(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)f(x)+对于任意的x1,2成立【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性菁

32、优网版权所有【专题】综合题;函数思想;综合法;导数的概念及应用【分析】()求出原函数的导函数,然后对a分类分析导函数的符号,由导函数的符号确定原函数的单调性;()构造函数F(x)=f(x)f(x),令g(x)=xlnx,h(x)=则F(x)=f(x)f(x)=g(x)+h(x),利用导数分别求g(x)与h(x)的最小值得到F(x)恒成立由此可得f(x)f(x)+对于任意的x1,2成立【解答】()解:由f(x)=a(xlnx)+,得f(x)=a(1)+=(x0)若a0,则ax220恒成立,当x(0,1)时,f(x)0,f(x)为增函数,当x(1,+)时,f(x)0,f(x)为减函数;当a0,若0

33、a2,当x(0,1)和(,+)时,f(x)0,f(x)为增函数,当x(1,)时,f(x)0,f(x)为减函数;若a=2,f(x)0恒成立,f(x)在(0,+)上为增函数;若a2,当x(0,)和(1,+)时,f(x)0,f(x)为增函数,当x(,1)时,f(x)0,f(x)为减函数;()解:a=1,令F(x)=f(x)f(x)=xlnx1=xlnx+令g(x)=xlnx,h(x)=则F(x)=f(x)f(x)=g(x)+h(x),由,可得g(x)g(1)=1,当且仅当x=1时取等号;又,设(x)=3x22x+6,则(x)在1,2上单调递减,且(1)=1,(2)=10,在1,2上存在x0,使得x(

34、1,x0) 时(x0)0,x(x0,2)时,(x0)0,函数(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)h(2)=,当且仅当x=2取等号,f(x)f(x)=g(x)+h(x)g(1)+h(2)=,F(x)恒成立即f(x)f(x)+对于任意的x1,2成立【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题21(14分)(2016山东)平面直角坐标系xOy中,椭圆C:+=1(ab0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点(I)求椭圆C的方程;()设P是E

35、上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记PFG的面积为S1,PDM的面积为S2,求的最大值及取得最大值时点P的坐标【考点】椭圆的简单性质菁优网版权所有【专题】方程思想;分析法;直线与圆;圆锥曲线的定义、性质与方程【分析】(I)运用椭圆的离心率公式和抛物线的焦点坐标,以及椭圆的a,b,c的关系,解得a,b,进而得到椭圆的方程;()(i)设P(x0,y0),运用导数求得切线的斜率和方程,代入椭圆方程,运用韦达定理,可得中点D的坐标,求得OD的方程,再

36、令x=x0,可得y=进而得到定直线;(ii)由直线l的方程为y=x0xy0,令x=0,可得G(0,y0),运用三角形的面积公式,可得S1=|FG|x0|=x0(+y0),S2=|PM|x0|,化简整理,再1+2x02=t(t1),整理可得t的二次方程,进而得到最大值及此时P的坐标【解答】解:(I)由题意可得e=,抛物线E:x2=2y的焦点F为(0,),即有b=,a2c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;()(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y=x,即有切线的斜率为x0,则切线的方程为yy0=x0(xx0),可化为y=x0xy0,代入椭圆

37、方程,可得(1+4x02)x28x0y0x+4y021=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,),直线OD的方程为y=x,可令x=x0,可得y=即有点M在定直线y=上;(ii)直线l的方程为y=x0xy0,令x=0,可得G(0,y0),则S1=|FG|x0|=x0(+y0)=x0(1+x02);S2=|PM|x0|=(y0+)=x0,则=,令1+2x02=t(t1),则=2+=()2+,则当t=2,即x0=时,取得最大值,此时点P的坐标为(,)【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题参与本试卷答题和审题的老师有:qiss;sxs123;翔宇老师;546278733;于东;双曲线;wfy814;wkl197822;zlzhan(排名不分先后)菁优网2016年6月13日第21页(共21页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服