1、一、解答题1问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1x2,则ABy轴,且线段AB的长度为|y1y2|;若y1y2,则ABx轴,且线段AB的长度为|x1x2|;(应用):(1)若点A(1,1)、B(2,1),则ABx轴,AB的长度为 (2)若点C(1,0),且CDy轴,且CD2,则点D的坐标为 (拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)|x1x2|+|y1y2|;例如:图1中,点M(1,1)与点N(1,2)之间的折线距离为d(M,N)|11|+|1(2)|
2、2+35解决下列问题:(1)如图1,已知E(2,0),若F(1,2),则d(E,F) ;(2)如图2,已知E(2,0),H(1,t),若d(E,H)3,则t (3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q) 2直线ABCD,点P为平面内一点,连接AP,CP(1)如图,点P在直线AB,CD之间,当BAP60,DCP20时,求APC的度数;(2)如图,点P在直线AB,CD之间,BAP与DCP的角平分线相交于K,写出AKC与APC之间的数量关系,并说明理由;(3)如图,点P在直线CD下方,当BAKBAP,DCKDCP时,写出AKC与APC之间的数量关系,并说明理
3、由3如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由4汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/
4、秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?5已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HF
5、G之间的数量关系6已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 7定义:如果,那么称b为n的布谷数,记为.例如:因为,所以,因为,所以.(1)根据布谷数的定义填空:g(2)=_,g(32)=_.(2)布谷数有如下运算性质:若m,n为正整数,则,.根据运算性质解答下列各题:已知
6、,求和的值;已知.求和的值.8小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减”如:,反之,这个式子仍然成立,即:.(1)问题发现观察下列等式:,猜想并写出第个式子的结果: (直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:,类比该问题的做法,请直接写出下列各式的结果: ; ;(3)拓展延伸计算:9观察下列各式,并用所得出的规律解决问题:(1),由此可见,被开方数的小数点每向右移动_位,其算术平方根的小数点向_移动_位(2)已知,则_;_(3),小数点的变化规律是_(4)已知,
7、则_10对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,所以(1)计算:和;(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且,猜想:_,并说明你猜想的正确性11阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小
8、明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:,即,的整数部分为2,小数部分为。请解答(1)的整数部分是_,小数部分是_。(2)如果的小数部分为a,的整数部分为b,求的值。(3)已知x是的整数部分,y是其小数部分,直接写出的值.12规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222,(-3)(-3)(-3)(-3)等类比有理数的乘方,我们把222记作2,读作“2的圈3次方”,(-3)(-3)(-3)(-3)记作(-3),读作“-3的圈4次方”,一般地,把 (a0)记作a,读作“a的圈n次方”(初步
9、探究)(1)直接写出计算结果:2=_,()=_;(2)关于除方,下列说法错误的是_A任何非零数的圈2次方都等于1;B对于任何正整数n,1=1;C3=4;D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(-3)=_;5=_;(-)=_(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于_;(3)算一算:()(2)()13如图,已知,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上
10、,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.14已知,ABCD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数15如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,
11、2)(1)直接写出点E的坐标 ;D的坐标 (3)点P是线段CE上一动点,设CBP=x,PAD=y,BPA=z,确定x, y,z之间的数量关系,并证明你的结论16如果 x 是一个有理数,我们定义x 表示不小于 x 的最小整数 如3.2 = 4 , -2.6 = -2 , 5 = 5 , -6 = -6.由定义可知,任意一个有理数都能写成 x = x - b 的形式( 0b1 )(1)直接写出x 与 x , x + 1的大小关系;提示1:用“不完全归纳法”推导x 与 x , x + 1的大小关系;提示2:用“代数推理”的方法推导x 与 x , x + 1的大小关系(2)根据(1)中的结论解决下列问
12、题: 直接写出满足3m + 7 = 4 的 m 取值范围; 直接写出方程3.5n - 2 = 2n + 1 的解.17在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得MPQ的面积等于1,即SMPQ1,则称点M为线段PQ的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0)(1)在点A(1,2),B(1,1),C(1,2),D(2,4)中,线段OP的“单位面积点”是 ;(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围 (3)已知点Q(1,2),H(
13、0,1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若SHMNSPQN,求出点N纵坐标的取值范围18在如图所示的平面直角坐标系中,A(1,3),B(3,1),将线段A平移至CD,C(m,-1),D(1,n)(1)m=_,n=_(2)点P的坐标是(c,0)设ABP=,请写出BPD和PDC之间的数量关系(用含的式子表示,若有多种数量关系,选择一种加以说明)当三角形PAB的面积不小于3且不大于10,求点p的横坐标C的取值范围(直接写出答案即可)19数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,
14、请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由20两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数已知前一个四位数比后一个四位数大990若设较大的两位数为x,较小的两位数为y,回答下列问题:(1)可得到下列哪一个方程组?A BC D(2)解所确定的方程组,求这两个两位数21(阅读感悟)
15、一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数,满足,求和的值本题的常规思路是将两式联立组成方程组,解得,的值再代入欲求值的式子得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由可得,由+2可得这样的解题思想就是通常所说的“整体思想”(解决问题)(1)已知二元一次方程组,则 , (2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?(3)对于实
16、数,定义新运算:,其中,是常数,等式右边是通常的加法和乘法运算已知,求的值22阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解例:由,得:,(x、y为正整数),则有又为正整数,则为正整数由2与3互质,可知:x为3的倍数,从而x=3,代入2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解:.(2)若为自然数,则满足条件的x值为.(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?23一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k
17、,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值24对a,b定义一种新运算T,规定:T(a,b)(a+2b)(ax+by)(其中x,y均为非零实数)例如:T(1,1)3x+3y(1)已知T(1,1)0,T(0,2)8,求x,y的值;(2)已知关于x,y的方程组,若a2,求x+y的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段OA,坐标轴上有一
18、点B满足三角形BOA的面积为9,请直接写出点B的坐标25某小区准备新建个停车位,以解决小区停车难的问题已知新建个地上停车位和个地下停车位共需万元:新建个地上停车位和个地下停车位共需万元,(1)该小区新建个地上停车位和个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过万元而不超过万元,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.26我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种
19、组合叫做“无缘组合”(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;(2)若关于x的组合是“有缘组合”,求a的取值范围;(3)若关于x的组合是“无缘组合”;求a的取值范围27阅读理解:例1解方程|x|2,因为在数轴上到原点的距离为2的点对应的数为2,所以方程|x|2的解为x2例2解不等式|x1|2,在数轴上找出|x1|2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1或3,所以方程|x1|2的解为x1或x3,因此不等式|x1|2的解集为x1或x3参考阅读材料,解答下列问题:(1)方程|x2|3的解为 ;(2)解不等式:|x2|1(3)解不等式:|x4|+|x+
20、2|8(4)对于任意数x,若不等式|x+2|+|x4|a恒成立,求a的取值范围28中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?29某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两
21、天的销售情况销售日期销售数量(盏)销售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?30在平面直角坐标系中,如图正方形的顶点,坐标分别为,点,坐标分别为,且,以为边作正方形.设正方形与正方形重叠部分面积为.(1)当点与点重合时,的值为_;当点与点重合时,的值为_.(2)请用含的式子表示,并直接写出的取值范围.【参考答案】*试卷处理标记,请不要删除一、解答题1【应用】:(1)3;(2)(1,2)或(1,2);【拓展】:(1)5;(2)2或2;(3
22、)4或8【分析】(应用)(1)根据若y1y2,则ABx轴,且线段AB的长度为|x1x2|,代入数据即可得出结论;(2)由CDy轴,可设点D的坐标为(1,m),根据CD2,可得|0m|2,故可求出m,即可求解;(拓展)(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论;【详解】(应用):(1)AB的长度为|12|3故答案为:3(
23、2)由CDy轴,可设点D的坐标为(1,m),CD2,|0m|2,解得:m2,点D的坐标为(1,2)或(1,2)故答案为:(1,2)或(1,2)(拓展):(1)d(E,F)|2(1)|+|0(2)|5故答案为:5(2)E(2,0),H(1,t),d(E,H)3,|21|+|0t|3,解得:t2故答案为:2或2(3)由点Q在x轴上,可设点Q的坐标为(x,0),三角形OPQ的面积为3,|x|33,解得:x2当点Q的坐标为(2,0)时,d(P,Q)|32|+|30|4;当点Q的坐标为(2,0)时,d(P,Q)|3(2)|+|30|8故答案为:4或8【点睛】本题是三角形综合题目,考查了新定义、两点间的距
24、离公式、三角形面积等知识,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键2(1)80;(2)AKCAPC,理由见解析;(3)AKCAPC,理由见解析【分析】(1)先过P作PEAB,根据平行线的性质即可得到APEBAP,CPEDCP,再根据APCAPE+CPEBAP+DCP进行计算即可;(2)过K作KEAB,根据KEABCD,可得AKEBAK,CKEDCK,进而得到AKCAKE+CKEBAK+DCK,同理可得,APCBAP+DCP,再根据角平分线的定义,得出BAK+DCKBAP+DCP(BAP+DCP)APC,进而得到AKCAPC;(3)过K作KEAB,根据KEABCD,可得
25、BAKAKE,DCKCKE,进而得到AKCBAKDCK,同理可得,APCBAPDCP,再根据已知得出BAKDCKBAPDCPAPC,进而得到BAKDCKAPC【详解】(1)如图1,过P作PEAB,ABCD,PEABCD,APEBAP,CPEDCP,APCAPE+CPEBAP+DCP60+2080;(2)AKCAPC理由:如图2,过K作KEAB,ABCD,KEABCD,AKEBAK,CKEDCK,AKCAKE+CKEBAK+DCK,过P作PFAB,同理可得,APCBAP+DCP,BAP与DCP的角平分线相交于点K,BAK+DCKBAP+DCP(BAP+DCP)APC,AKCAPC;(3)AKCA
26、PC理由:如图3,过K作KEAB,ABCD,KEABCD,BAKAKE,DCKCKE,AKCAKECKEBAKDCK,过P作PFAB,同理可得,APCBAPDCP,BAKBAP,DCKDCP,BAKDCKBAPDCP(BAPDCP)APC,AKCAPC【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算3(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即
27、可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用
28、了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键4(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光
29、束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键5(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可(2)如图2中,结论:2BEG-HFG=90利用平行线的性质证明即可【详解】解:(1)EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90,BEG=36,HFG=18故答案为:18结论:2BEG+HFG=90理由:EG平分BEF,BE
30、G=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90(2)如图2中,结论:2BEG-HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90-HFG=180,2BEG-HFG=90【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型6(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质
31、求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当30t45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,B
32、PBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题7(1)1;5;(2)3.807,0.807;.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)根据布谷数的运算性质, g(14)=g(27)=g(2)+g(7),再代入数值可得解;根据布谷数的运算
33、性质, 先将两式化为,再代入求解.【详解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案为1,32;(2)g(14)=g(27)=g(2)+g(7),g(7)=2.807,g(2)=1,g(14)=3.807;g(4)=g(22)=2,=g(7)-g(4)=2.807-2=0.807;故答案为3.807,0.807;.;.【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键8(1) ;(2);(3) 【分析】(1)根据题目中的式子可以写出第n个式子的结果;(2)根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;根据题
34、目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值【详解】解:(1)由题目中的式子可得,故答案为:;(2),故答案为:;,故答案为:;(3)【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值9(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律
35、计算即可得到结果【详解】解:(1),由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位故答案为:两;右;一;(2)已知,则;故答案为:12.25;0.3873;(3),小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4),y=-0.01【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键10(1);(2)见解析;(3)【分析】(1)根据的定义,可以直接计算得出;(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;(3)根据(2)中的结论,猜想:【详解】解:(1)已知,所以新的三个数分别是:,这
36、三个新三位数的和为,;同样,所以新的三个数分别是:,这三个新三位数的和为,(2)设,得到新的三个数分别是:,这三个新三位数的和为,可得到:,即等于x的各数位上的数字之和(3)设,由(2)的结论可以得到:,根据三位数的特点,可知必然有:,故答案是:【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同11(1)3;3; (2)4;(3)xy=7【分析】(1)由34可得答案;(2)由23知a=2,由67知b=6,据此求解可得;(3)由23知53+6,据此得出x、y的值代入计算可
37、得【详解】(1)34,的整数部分是3,小数部分是3;故答案为3;3(2)23,a=2,67,b=6,a+b=2+6=4(3)23,53+6,3+的整数部分为x=5,小数部分为y=3+5=2则xy=5(2)=5+2=7【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小12初步探究:(1),8;(2)C;深入思考:(1),;(2);(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n次方算出
38、来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2=222=()=(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误;B:因为多少个1相除都是1,所以对于任何正整数n,1都等于1,故选项B错误;C:3=3333=,4=444=,34,故选项C正确;D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;故答案选择:C.深入思考:(1)(-3)=(-3)(-3)(-3) (-3)=5=555555=(-)=(2)a=aaaa=(3)原式=-5【点睛】本题主要考查了除方运算,运用
39、到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.13(1),; (2);(3)【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由列方程组,求出点C坐标,进而由ACD面积求出D点坐标.(3)由平行线间距离相等得到,继而求出E点坐标,同理求出F点坐标,再由GE=12求出G点坐标,根据求出PG的长即可求P点坐标.【详解】解:(1),(2)由,如图1,连,作轴,轴,即,而,(3)如图2:EFAB,即,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键14(1)见解
40、析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEMED,GMEGMQ+QMEBGM+MED,HPAB,BGHGHP2BGM,HPCD,PHE
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100