1、人教版七年级数学下册期末综合复习题含答案一、选择题1如图,与是( )A同位角B内错角C同旁内角D对顶角2下列各组图形可以通过平移互相得到的是()ABCD3点A(-2,-4)所在象限为( )A第一象限B第二象限C第三象限D第四象限4下列四个命题:对顶角相等;内错角相等;平行于同一条直线的两条直线互相平行;如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;过一点有且只有一条直线与已知直线垂直其中真命题的个数是( )A1个B2个C3个D4个5如果,直线,则等于( )ABCD6有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,
2、其中正确的说法有( )A1个B2个C3个D4个7如图,ABCD为一长方形纸片,ABCD,将ABCD沿E折叠,A、D两点分别与A、D对应,若CFE2CFD,则AEF的度数是( )A60B80C75D728如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,2),第四次运动到P4(4,0),第五次运动到P5(5,2),第六次运动到P6(6,0),按这样的运动规律,点P2021的纵坐标是()A2B0C1D2九、填空题9若,则的值为十、填空题10若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点
3、是P ,若点P的坐标为(-3,4),则a=_,b=_十一、填空题11如图,已知在四边形ABCD中,A=,C=,BF,DP为四边形ABCD的ABC、ADC相邻外角的角平分线当、满足条件_时,BFDP十二、填空题12如图,将三角板与两边平行的直尺()贴在一起,使三角板的直角顶点C()在直尺的一边上,若,则的度数等于_十三、填空题13将一条长方形纸带按如图方式折叠,若,则的度数为_十四、填空题14对于任意有理数a,b,规定一种新的运算aba(a+b)1,例如,252(2+5)113则(2)6的值为_十五、填空题15在平面直角坐标系中,若在轴上,则线段长度为_十六、填空题16在平面直角坐标系中,点经过
4、某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为_十七、解答题17计算:(1).(2)12+(2)3 .十八、解答题18求下列各式中x的值:(1)(x+1)3270(2)(2x1)2250十九、解答题19如图所示,于点,于点,若,则吗?下面是推理过程,请你填空或填写理由证明:于点,于点(已知),(_),(_),(_),(已知)(_),_(_)_(等量代换)二十、解答题20三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,(1)将向右平移4个单位长度得到,画出平移后的;(2)将向下平移5个单位长度得到,画出平移
5、后的;(3)直接写出三角形的面积为_平方单位(直接写出结果)二十一、解答题21阅读下面文字,然后回答问题给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,2.6的整数部分为3,小数部分为由此我们得到一个真命题:如果,其中是整数,且,那么,(1)如果,其中是整数,且,那么_,_;(2)如果,其中是整数,且,那么_,_;(3)已知,其中是整数,且,求的值;(4)在上述条件下,求的立方根二十二、解答题22张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块
6、面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,求的度数二十四、解答题24已知两条直线l1,l2,l1l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足(1)如图,求证:ADBC;(2)点M
7、,N在线段CD上,点M在点N的左边且满足,且AN平分CAD;()如图,当时,求DAM的度数;()如图,当时,求ACD的度数二十五、解答题25如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线
8、构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值【参考答案】一、选择题1A解析:A【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可【详解】解:根据图象,A与1是两直线被第三条直线所截得到的两角,因而A与1是同位角, 故选:A【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单2B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移
9、得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故解析:B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故本选项错误故选:B【点睛】本题考查了图形的平移,正确掌握平移的定义和性质是解题关键3C【分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限【详解】A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限故选C【点睛】本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个
10、象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据几何初步知识对命题逐个判断即可【详解】解:对顶角相等,为真命题;内错角相等,只有两直线平行时,内错角才相等,此为假命题;平行于同一条直线的两条直线互相平行,为真命题;如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题;过直线外一点有且只有一条直线与已知直线垂直,为假命题;命题正确故选:B【点睛】本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键5B【分析】先求DFE的度数,再利用平角的定义计算求解即可【详解】ABCD,DFE=A=
11、65,EFC=180-DFE =115,故选B【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键6B【分析】根据平方根与立方根的定义与性质逐个判断即可【详解】(1)是36的一个平方根,则此说法正确;(2)16的平方根是,则此说法错误;(3),则此说法正确;(4),4是有理数,则此说法错误;(5)当时,无意义,则此说法错误;综上,正确的说法有2个,故选:B【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键7D【分析】先根据平行线的性质,由ABCD,得到CFE=AEF,再根据翻折的性质可得DFE=EFD,由平角的性质可求得CFD的度数,即可得出
12、答案【详解】解:ABCD,CFE=AEF,又DFE=EFD,CFE=2CFD,DFE=EFD=3CFD,DFE+CFE=3CFD+2CFD=180,CFD=36,AEF=CFE=2CFD=72故选:D【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键8D【分析】观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到解析:D【分析】观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三
13、次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),结合运动后的点的坐标特点,分别得出点P运动的纵坐标的规律,再根据循环规律可得答案【详解】解:观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,-2,0,2,0;20216=3365,经过第2021次运动后,动点P的纵坐标是2,故选:D【点睛】本题考查了规律型点的坐
14、标,数形结合并从图象中发现循环规律是解题的关键九、填空题9【解析】解:有题意得,则解析:【解析】解:有题意得,则十、填空题10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考
15、查关于x轴、y轴对称的点的坐标,难度不大十一、填空题11=【详解】试题解析: 当BFDP时, 即: 整理得: 故答案为解析:=【详解】试题解析: 当BFDP时, 即: 整理得: 故答案为十二、填空题1235【分析】根据平行线的性质和直角三角形两锐角互余即可求得【详解】故答案为:35【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键解析:35【分析】根据平行线的性质和直角三角形两锐角互余即可求得【详解】故答案为:35【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键十三、填空题1336【分析】根据平行线的性质、折叠的性质即可解决【详解】AB
16、CD,如图GEC=1=108由折叠的性质可得:2=FED2+FED+GEC=1802=解析:36【分析】根据平行线的性质、折叠的性质即可解决【详解】ABCD,如图GEC=1=108由折叠的性质可得:2=FED2+FED+GEC=1802= 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质十四、填空题14-9【分析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察
17、新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.十五、填空题155【分析】先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案【详解】在轴上,横坐标为0,即,解得:,故,线段长度为,故答案为:5【点睛】本题只要考查解析:5【分析】先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案【详解】在轴上,横坐标为0,即,解得:,故,线段长度为,故答案为:5【点睛】本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数十六、填空题16【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点
18、P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后解析:【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后利用202145051可判断点P2021的坐标与点P1的坐标相同【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,-1),点P5的坐标为(2,0),而20214505+1,所以点P2021的坐标与点P1的坐标相同,为(2,0),故
19、答案为:【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键十七、解答题17(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果【详解】解:(1)原式=3-6-解析:(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8) -(-3)(- )=-1-1-1=-3故答案为(1)0;(
20、2)-3【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键十八、解答题18(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=5,x=3或x=-2【点睛】本题考查
21、了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键十九、解答题19垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【分析】根据垂直的定义得到ADC=EGC=90,根据平行线的判定得到ADE解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【分析】根据垂直的定义得到ADC=EGC=90,根据平行线的判定得到ADEG,由平行线的性质得到1=2,等量代换得到E=2,由平行线的性质得到E=3,等量代换即可得到结论【详解】证明:ADBC于点D,EGBC于点G(已知), ADC=EG
22、C=90(垂直的定义),ADEG(同位角相等,两直线平行),1=2(两直线平行,内错角相等),E=1(已知),E=2(等量代换),ADEG,E=3(两直线平行,同位角相等),2=3(等量代换), 故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【点睛】本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键二十、解答题20(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应解析:(
23、1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积【详解】解:(1)平移后的三角形如下图所示;(2)平移后的三角形如下图所示;(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,SABC【点睛】本题考查了作图平移变换,解题的关键是
24、要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差二十一、解答题21(1)2,;(2)3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,解析:(1)2,;(2)3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,分别求得的值,再代入绝对值中计算即可;(4)根据前三问的结果,代入代数式求值,最后求立方根即可【
25、详解】(1),故答案为:2,,;(2),故答案为:3,;(3),;(4),27的立方根为3,即的立方根为3【点睛】本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键二十二、解答题22不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,
26、所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数
27、的大小二十三、解答题23(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360解析:(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=PEG-GEH可得答案
28、【详解】解:(1)A+C+APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ=360,即A+C+APC=360;(2)APC=A+C,如图2,作PQAB,A=APQ,ABCD,PQCD,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=PEG-GEH=FEG-
29、BEG=BEF=55【点睛】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用二十四、解答题24(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得解析:(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得;()设,从而可得,先根据角平分线的定义可得,再根据角的和差可
30、得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得【详解】(1),又,;(2)(),由(1)已得:,;()设,则,平分,由(1)已得:,即,解得,又,【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键二十五、解答题25(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)
31、根据角平分线的定义可得A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)
32、=180-2F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2A1=AEC+ACE=2(QEC+QCE),利用三角形内角和定理表示出QEC+QCE,即可得到A1和Q的关系【详解】解:(1)当A为70时,ACD-ABD=A,ACD-ABD=70,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线,A1CD-A1BD=(ACD-ABD)A1=35;故答案为:A,70,35;(2)A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+BAC,BAC=2A1=80,A1=40,同理可得A1=2A2,即BAC=22A
33、2=80,A2=20,A=2nAn,故答案为:A=2An(3)ABC+DCB=360-(A+D),ABC+(180-DCE)=360-(A+D)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,360-(+)=180-2F,2F=A+D-180,F=(A+D)-90,A+D=230,F=25;故答案为:25(4)Q+A1的值为定值正确ACD-ABD=BAC,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1=A1CD-A1BD=BAC, AEC+ACE=BAC,EQ、CQ是AEC、ACE的角平分线,QEC+QCE=(AEC+ACE)=BAC,Q=180-(QEC+QCE)=180-BAC,Q+A1=180【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100