ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:1.41MB ,
资源ID:4902095      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4902095.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(全国初中数学竞赛《圆》历届真题.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全国初中数学竞赛《圆》历届真题.doc

1、精品文档 初中数学竞赛《圆》历届考题 1(04).D是△ABC的边AB上的一点,使得AB=3AD,P是△ABC外接圆上一点,使得,求的值. 解:连结AP,则, 所以,△APB∽△ADP, …………………………(5分) ∴, 所以, ∴, …………………………(10分) A1 B C D A B1 C1 I 所以. …………………………(15分) 2、(05)已知点I是锐角三角形ABC的内心,A1,B1,C1分别是 点I关于边BC,CA,AB的对称点。若点B在△A1B1C1的外接 圆上,则∠ABC等于(   ) A、30°  

2、 B、45°   C、60°   D、90° 答:C 解:因为IA1=IB1=IC1=2r(r为△ABC的内切圆半径),所以 点I同时是△A1B1C1的外接圆的圆心,设IA1与BC的交点为D,则IB=IA1=2ID, 所以∠IBD=30°,同理,∠IBA=30°,于是,∠ABC=60° (第3题图) A B C D O Q P 3.(06)正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为( ) (A)(B) (C)(D) 答:D. 解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m, QA=r-m

3、.在⊙O中,根据相交弦定理,得QA·QC=QP·QD. 即 (r-m)(r+m)=m·QD ,所以 QD=.连结DO,由勾股定理,得QD2=DO2+QO2,即,解得所以, (第4题) A B C O P E K 4.(06)如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB. 证明:因为AC∥PB,所以∠KPE=∠ACE.又PA是⊙O的切线, 所以∠KAP=∠ACE,故∠KPE=∠KAP,于是

4、 △KPE∽△KAP, 所以 , 即 . 由切割线定理得 所以 . …………………………10分 因为AC∥PB,△KPE∽△ACE,于是 故 , 即 PE·AC=CE·KB. ………………………………15分 5(07)已知△为锐角三角形,⊙经过点B,C,且与边AB,AC分别相交于点D,E.若⊙的半径与△的外接圆的半径相等,则⊙一定经过△的( ). (A)内心 (B)外心 (C)重心 (D)垂心 答:(B). 解: 如图,连接BE,因为△为锐角三角形,所以,

5、均为锐角.又因为⊙的半径与△的外接圆的半径相等, 且为两圆的公共弦,所以. (第3题答案图) 于是,. 若△的外心为,则,所以,⊙一定过△的外心.故选(B). 6.已知AB为半圆O的直径,点P为直径AB上的任意一点.以点A为圆心,AP为半径作⊙A,⊙A与半圆O相交于点C;以点B为圆心,BP为半径作⊙B,⊙B与半圆O相交于点D,且线段CD的中点为M.求证:MP分别与⊙A和⊙B相切. (第13A题答案图) 证明:如图,连接AC,AD,BC,BD,并且分别过点C,D作AB的垂线,垂足分别为,则CE∥DF.因为AB是⊙O的直径,所以.在Rt△和Rt△中,由射影定理得,.

6、……………5分 两式相减可得, 又 , 于是有 ,即, 所以,也就是说,点P是线段EF的中点.因此,MP是直角梯形的中位线,于是有,从而可得MP分别与⊙A和⊙B相切. 7.如图,点E,F分别在四边形ABCD的边AD,BC的延长线上,且满足.若,的延长线相交于点,△的外接圆与△的外接圆的另一个交点为点,连接PA,PB,PC,PD.求证: (1); (2)△∽△. 证明:(1)连接PE,PF,PG,因为, 所以. 又因为,所以△∽△, 于是有 ,从而△∽△,所以.又已知,所以,. ………………10分 (2)由于,结合(1)知,△∽△,从而有 ,所以

7、因此△∽△. ………………15分 A B C D E I r ha (第8题) 8、△ABC中,AB=7,BC=8,CA=9,过△ABC的内切圆圆心l作DE∥BC,分别与AB、AC相交于点D,E,则DE的长为    。 解:如图,设△ABC的三边长为, 内切圆l的半径为r,BC边上的高为,则 ,所以, 因为△ADE∽△ABC,所以它们对应线段成比例,因此 所以DE= 故 DE=。 9、已知AB是半径为1的圆O的一条弦,且AB=<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=,DC的延长线交圆O

8、于点E,则AE的长为( B )。 A B C O D E (第9题) A、  B、1  C、  D、 解:如图,连接OE,OA,OB,设∠D=,则 ∠ECA=120°-=∠EAC 又因为∠ABO= 所以 △ACE≌△ABO,于是AE=OA=1 10.已知线段AB的中点为C,以点A为圆心,AB的长为半径作圆,在线段AB的延长线上取点D,使得BD=AC;再以点D为圆心,DA的长为半径作圆,与⊙A分别相交于F,G两点,连接FG交AB于点H,则的值为 . 解:如图,延长AD与⊙D交于点E,连接AF,EF .由题设知,,在△FHA和△EFA中,, (第

9、10题) 所以 Rt△FHA∽Rt△EFA, .而,所以. 11(10).如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF. 求证: (第12A题) . (第12B题) (第12B题) 证明:如图,连接ED,FD. 因为BE和CF都是直径,所以 ED⊥BC, FD⊥BC, 因此D,E,F三点共线. …………(5分) 连接AE,AF,则 (第11题) , 所以,△ABC∽△AEF. …………(10分) 作AH⊥EF,垂足为H,则AH=

10、PD. 由△ABC∽△AEF可得 , 从而 , 上海市劳动和社会保障局所辖的“促进就业基金”,还专门为大学生创业提供担保,贷款最高上限达到5万元。所以 . …………(20分) (2) 缺乏经营经验 4、“体验化” 消费A B C 标题:大学生“负债消费“成潮流 2004年3月18日 H “碧芝”最吸引人的是那些小巧的珠子、亮片等,都是平日里不常见的。据店长梁小姐介绍,店内的饰珠有威尼斯印第安的玻璃珠、秘鲁的陶珠、奥地

11、利的施华洛世奇水晶、法国的仿金片、日本的梦幻珠等,五彩缤纷,流光异彩。按照饰珠的质地可分为玻璃、骨质、角质、陶制、水晶、仿金、木制等种类,其造型更是千姿百态:珠型、圆柱型、动物造型、多边形、图腾形象等,美不胜收。全部都是进口的,从几毛钱一个到几十元一个的珠子,做一个成品饰物大约需要几十元,当然,还要决定于你的心意 尽管售价不菲,却仍没挡住喜欢它的人。P 年轻有活力是我们最大的本钱。我们这个自己动手做的小店,就应该与时尚打交道,要有独特的新颖性,这正是我们年轻女孩的优势。D Q 12(11)、如图,点H为△ABC的垂心,以AB为直径的⊙和△BCH的外接圆⊙相交于点D,延长AD交CH于点P,求证:点P为CH的中点。 证明:如图,延长AP交⊙于点Q 8、你是如何得志DIY手工艺制品的?连结AH,BD,QC,QH ∵AB为直径 ∴∠ADB=∠BDQ=900 ∴BQ为⊙的直径 于是CQ⊥BC,BH⊥HQ (二)大学生对DIY手工艺品消费态度分析∵点H为△ABC的垂心 ∴AH⊥BC,BH⊥AC ∴AH∥CQ,AC∥HQ,四边形ACHQ为平行四边形 可是创业不是一朝一夕的事,在创业过程中会遇到很多令人难以想象的疑难杂症,对我们这些80年代出生的温室小花朵来说,更是难上加难。则点P为CH的中点。 精品文档

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服