ImageVerifierCode 换一换
格式:PDF , 页数:59 ,大小:1.59MB ,
资源ID:4887373      下载积分:15 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4887373.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【曲****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【曲****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(Walter Rudin 泛函分析答案.pdf)为本站上传会员【曲****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

Walter Rudin 泛函分析答案.pdf

1、P381.(a)If 3 22,such that 力+2i=y)岔+z2=ythen x+z=力+22,wecan get that x+力+21=x+力+22-Hence=Z2.(b)(0+0)x=Ox+Ox=Ox=Ox=0QO=Q(0+0)=QO+QO=QO=0(c)Vx G 2A,Ba E A,such that x=2a=a+a,so x A-h A,Hence 2A C A+A.Let A be the set of integer,and A A=A D 2A(d),今If A is convex,then C A,i.e.M+sA C(t+s)A.Furthermore Vx

2、e 4(力+s)x tx sx C tA sA.So(t+s)A C M+sA.Hence(t+s)A=M+sA.今If(t+s)A=M+sA,then we can choose s=1 t,thus we get the conclusion right now.(e)Let F=|J Bi.Vz e A,|a|1,aBi C Then QF=|J C iGA EeABi=F.The situation of intersection can be proved the same way.ieA(f)Let F=口 G,VI e A,G is convex./x、y F,that is,V

3、i G A,x eCiy e Ci,then 力6+(1 t)y e Ci,/i e t 1.Hence 柢+(1 t)x e n G=F.(g)r=Ci:z G A is a total ordered set with the order of set inclusion relations.Let F=U where Ci is convex.Then Vx,?/G F,3z e A,such EeAthat x e Ci)y e C”Hence VO t 1,to+(1 t)y E Ci C F.Thus F is convex.(h)Since A,B are both convex

4、,Vx+2/eA+B,xeA,2/eB,Vxz+y G A+B,B G A,y G B,and 0 t 1,t(x+9)+(1 力)3+)=tx+(1-t)x+ty+(1-t)y e A-B,0 t 1Hence A+B is convex.(i)Since A,Bare both balanced sets,Vx-hyeA-hB,xeA,1,ax y)=aa ay E A+B.Hence A+B is balanced.(j)The proof is simple and therefore omitted here.2.Let r nco(A)=力1 6 1+tnxn:=1,e A,n e

5、 NI i=l1Then Vx,?/co(A),3n N,such that x=y=Eti,wheret,=Eti=i.yo s 0,Vs,Ac tW.V x e co(A),x=七 EZi 行=1,g G 4So nx=2tig t1tW+tntW=t(tW+%+nW),ilNote that W is convex,using 1(d),we have力1W+一+如W=(11+一+tn)W=W.Hence x e tW C tV that is,co(4)C tV.(c)For any neighborhood V containing the origin point,there ex

6、ists a neighborhood W also containing the origin point,such that W+W C V.Note that A,B are bounded,so 3 si,s2 0,Visi,力2%we have A C B C t2W.This implies thatA+B GhW+hW C(力 1+t2)W+IV)C(力 1+12)上(d)Let Vi covers Then x-B C|JiGr Vx e A.B is compact,thus x+B is also compact.Then x+B G U2i 匕().According t

7、o the separating theorem,3 0,such that+x+B C U2 1 匕 Let Vx=Vg x.Thenn匕+8uU 匕,AcJVx.2=1 XEAConcerning A is compact,we have A G U晨 1 匕i,thusm m m n4+8U U%+8=U(%+切0 Uj=l j=l j=l il2We can also get the solution as following.Since both A and B are compact,A x B is compact.AxB A+B(a+b)a+bNote that the add

8、ition is continuous,we know it is a continuous map,so A+B is compact.(e)Suppose x 串 A+B.Then(x A)Q B=Note that B is closed and A is compact,i.e.x A is compact.Therefore there exists a neighborhood of origin V,such that(x A+V)Q(B+V)=0.So(rr+V)Q(A+B+V)=0,hence(x+V)Q A+B=0,that implies that x A+B.That

9、is,A+B C A+B C A+B,which completes the proof.(f)Example 1:A=(x,?/)e R:X 0,?/|,B=(劣用)e R:x o,?/一;Then both A and B are closed sets.A+B is the right-half plane,however,it doesnt contain the y axis.Therefore,A+B is open.Example 2:A=n:n e Z+,B=n+:n e%+.nThen A,B are balanced on R.(compatible with the co

10、mmon topology)But n G Z+C A+B,0 g A+B.Then 0 e A-B.Therefore A+B is not closed.4.B=0,22)e C2:|1|z2,/z e B,z=(次,22),I|R.VQ|0,3/;s,such that E g tVi.e.Bxs G xs 串 tV.Sowhens=1,3Xi e Xi 力 1,3Whens=n,3xn E Exn tnV,3tn n,Let F=xi:i e N+C E,which is countable.As the description above,we have,for V,Vs 0,3/:

11、s,such that 力回+i 4 力回+1卜,here we choose t as ts+1.Hence F is unbounded,which leads to contradiction.8.(a)Note that if pi e C,p2 ,then p(x)=max(pi(x),p2()G C.x:px)=x:Pi(x)|c:P2(C):.Therefore V(p,n)=V(pi,n)Q V(p2,九).Hence(*)Vp e p G P,such that V(p,n)C V(pn)Define a topology as Theorem 1.37.Then for,T

12、 is the finite intersections of V(p,n)and the union of those intersections,p E C.For P,T is the finite intersections of Vp n)and the union of those intersections,pf e P.Using(*),we have T C rf.Meanwhile,clearly,/pr GG C.So T C T.Accordingly,T=T.Since V(p)n)=八)V(P2,九),G G,we can obtain that V(p,n)is

13、just the intersection of Vn)%e P.Hence the family of seminorms directly leads to a base rather than a subbase.(b)Note that A is a linear functional.Suppose 3M oc,Vx e X,|Ax|Mp(x).ThenVx e V(p,Mn),p(/)MnHence|Ax|M that is,A is continuous.,今If A is continuous,then 3 U 3 0,U D n),such that Vx e C7,|Ax|

14、1.Clearly,Vx e V(2?,n),Ax 1 also stands.Suppose/p e Cy M Mp(x M 0.That is,1.Here,=匕 In other words,Vp,when x eX,p=心,we have|Ax|1.Picking M n,we can get the contradiction.9.Define/:X/N Y x N AxObviously,Ax=/(lie),i.e.A=/o II.We have known that A is a linear mapping,that is/a1(3 G,y E X,K(ax+13y)=aA力+

15、3Ay.Or+(3y)=&/(b力)+B五y).So/(7T(QX+(3y)=/(a7rx)+f(/37ry)since TT is linear.It is all to know that 7r is a continuous open mapping.If/is a continuous or open mapping,then obviously A is a continuous or open mapping.We first4assume A is continuous,W C Y,V is an open set.TT_1 O=A-1(V)isopen.We have that

16、 is open since TV is continuous,so f is continuous.Now we assume A is an open mapping,/U C X/N,U is open,7T-1(C7)is open since TT is continuous,f(U)=A(7r-1(C7)is open,thus f is an open mapping.10.Noting that dim Y=n X/N.Then f is linear,and since Ver,=V+N e r,where/-1 denotes the inverseimage,we hav

17、e/(V)e r,that is,f is an open mapping.Next define g:X/N Y,where A=g o f.Then g is isomorphic and has the inverse map p_1.Since A=p o/is linear and f is linear,g is linear,so is gT,gi:Y X/N.Considering Y=Cn,gr is continuous.Therefore,g is open,which shows A is also open.(b)If N is closed,we can prove

18、 the desired result just in the same way as the proof of Theorem 1.18.Remember to note the range is Cn and that the norm should be the Euclidean norm.11._ _Assume NuLR 0夕 1,dim/N oc.Then N is closed,dim V/N oc.So Lp/N is local convex.Let A:L。Lp/N be a quotient mapping,hence A is a linear continuous

19、mapping.By P37 we have that A=0,in other words,Lp/N=0.Hence N=Lp,and we conclude that N is dense in Lp.12.Without lost of generality,we just consider the local basis B(0,r),z=1,2.For(R,di),B伊,r)=x:c/i(0,x)r=x:x,r)=x:%(0,劣)r=x:r.I 1+JWe just need to consider 0r 1,B2(0,r)=R.Since is increasing on 力#1,

20、81(。/)U-2(。,占1+rrBi r)DB2 t),0t 0,3 0,such that when n N,we have“2(*十)=(1+n)(fn+m)EThat is,劣n旌i is a cauchy sequence.However,obviously,lim一g 力九=oc,which demonstrates that d?is not complete.13.(a)V/e(C,a),d(/)=J Jo1+1/(叫dx 1.So VB G(C,r),E is cr-bounded.(b)Assume there is fn G(C,r)such that%noo.Since

21、 V=/:|/(x)|0by Lebesgues dominated convergence theorem.So id:(C,r)(C,a)is sequentially continuous.Following we shall illustrate the mapping is not contin-uous.Choose a member of the local base of(C,r),U=V pX1,ni)nV(Pt2,n2)n-n V(pXrn,nm).Define f E U like this,i 诉,于3=i,、linear,when x=Xi,i=1,m,when 力

22、e(&+J,&+i J),z=1,m 1,others,where 8=)minxi+i Xi:z=1,m 1.HenceThus id:(C,r)(C,cr)is not continuous.6(c)Assume F is a continuous linear functional on(C,r).We know that 30 E U such that F is bounded on U by Theorem 1.18.So3 V=V(p叫 i)U V(pi22)U-Uand 0 M oc such that F(V)M.Vf,g e V,and/(&)=分=1,m,we concl

23、ude that F(f)=F(g).Or else,let h(x)=af +(1 a)g(x)where the value of a is given latter.Then+(1 a)g(xi)=z=1,m.So/z V,furthermore|F(/z)|aF(f)-F(g)|Since F5*F(q),we have|F(/z)|M when a is large enough.This is contradiction.Thus V/,G C0,1 and=g(xi),i=1,m,there is a numbera e R+such that af,ag e V.By F(af

24、)=F(ag we get F(于)=F(p).Thereare/i,72,-Jm W C0,1,力(叼)=际=1,,m,and(supp 九)(supp fj)。=0 JV(UZi=【,1 Defineh=/(6 1)/10)+/(62)/2(劣)4-卜 f(劣,then h(xi)=/(0),z=1,m.SomilWrite Q=F(/i),z=1,-,m,we have F(/)=EZi(d)Assume V#0 is a convex set of(C,cr),then 3r 0,such thatBrl/WI1+l/WIdx rC V.Choose n e N such that-r

25、.V/e C0,1,define于。1(6)=/(x)(2-2nx)、0/(劣)(3+2nx 2z)/S/(x)(3+2nx 2n)q九 0)=(ox e。,3),x E%,),others,E r2i-3 2Z-2A 力/君,得),叱皇,Q others,others.x ex z=2,n 1,Then/=乙%=1ngz:=QU=L iJ;昂:?心 -2,pfn-/m)=上 andd(加)=max:T叫;一l 1+Pl Jn Jm)1 P(Jn jm)21+7?l(/n-/m)16So fn has not convergent subsequence,which implies that

26、any set contain-ing fn is not sequentially compactness.Since Vn 2,fn e Vi which is bounded,we have that every closed and bounded set containing fn is not selsequentially compactness,in other words it is not compact set.Hence C(Q)do not have the Heine-Borel property.16.ChooseooKn*0,Kn C Kn+,U Kn=Q,wh

27、ere Kn are compact sets,nlandocEn 子仪 En U 石口+i,|J=Q,where En are compact sets.n=lLet%=/e 0(Q):sup|/(x):x e Kn ,%=/e C(Q):sup|/(x):x e En ;.According to 1.44 we have known that%,Un are local bases,and induce the topology ri,T?respectively.Hence in order to prove ri=%we should only discuss the local b

28、ases.Vn N,Kn C U鼠:i Ei.So exist m e N,such that Kn C U,i E=4n since Kn is compact.This implies that Um C Vn.8V/K,|/(x)|0,力 G N,such that|/(x)|+A since the continuous function reaches maximal or minimal value on compact set.Write I=maxm,力.Vg Ui,that is gx);for all x in Ei,We haveI/O)+g(/)|/O)|+|g0)|1

29、/0)1+;Y is continuous.Therefore 30 e U,such that d(0,A/)i-.When x e MQC7,pick Vi C UO e V balanced,we have c/(0,Ax)When x e M Q Vi,3 7i 9 仇 such that +帆 U%.三%3U U balanced,d(0,Ax)when x e M Q 匕+%C V stands.-With such procedures,we can get%,。Vn balanced,and Vn+Vn CAx)m.Hence xn xm G M(Since M is a su

30、bspace.)xn xm e Vn-Vn C Vn_1.So xn xm e Vn_ QM.This implies that d(0,A(xn xm)21-nHence t/(0,Axn Axm)=A(xn xm)九加)21-n,9so Axn and Ayn converge to the same limit.Consequently,Ax has no relation with the selection of xn.When x e M,we can select xn=x,Vn,andAx=lim Axn=lim Ax=Ax.九一 OO TlTgVx,?/e xy a,(3 e

31、 C,separately select xn,yn,xn e(x+Vn)M,yn e(U+KJPI ThenA(QX+/3y)=lim A(axn+/3yn)九一 8=a lim Axn+(3 lim Ayn 71Toe ns=aXx+/3AyThis demonstrates A is linear.To prove the continuity of A,we just need to verify that at the origin.Vx e Vn,pick e(x+Vm)Q M.Since Ax=lim.一g A/g using(*),we have d(Nx,Axn)22-n.T

32、husd(O,A/)(i(0,Axn)+Axn)21n+22-n Y.20.V/e L2(-7T,7T),oo/(N)=。避次,cn=cn,n=1,2,for allmost everywhere x (7r,TT),andmlim|/-V c.加勺2=0.771-00 zdn=-mf cnein=工 c/.+。_逮一加n=-m n=0 n=lm m=W cneinx+工 cn(/n-nen)Ti=0 n1m m(cn-ncn)en+):cnfn e Xi+X?.71=0 n1Hence+X?is dense in L2(7r,TT).8 1 OOII 工-e-nll2=II 工-I-In=l

33、 n=l1n2 oc.10Thus 总i e-n L2(-7r,7r).Howeverlib lib 52 e_n=V Tn-nen)n nn=l n=lm-m=nl n1ooEn=l1e-n nmlim 5mTgn=l1en nm 1 mlim(工九 .).moo z/n z.nl nlBut liniM_g E晨i&n$上2(7r,7r),because the Fourier coefficients do not con-verge to 0.Obviously,-e_n 串 X1+X2.This example also shows X1+X2 is not closed,or X+

34、X?=Xi+X2=L2,which is a contradiction.21.We can easily get such a collection of%/Vn balanced,Vi+V2 C K Kz+i+Kz+i c Vn.Let(mD=1,let A(r)=Vc.If r e Z?,let A(r)=Q(r)%+。2(/)匕+。3(/)4+.Define/(x)=infr:x e A(r),x X).Obviously,/(0)=0,/(x)=l,Vx Vc.Vs 0,3r G Z),0 r e.Vx A(r),we have/(x)r e.Therefore,f is conti

35、nuous at the origin.Using(8)of P19:f(x+y)/(x)+/(?/),we can get/(%)=f(x-y+y)f(x 9)+f(y)=f(y-x+x)f(y /)+f(x)=f(x +/(x),which implies that|/(x)f(y)0,3 e N,|/n fm N,Thus|/n(0)-/m(0)|+SUp加):80%11we have that|/n(0)/m(0)|0 0,we conclude that|fn()-于m3-fn(V)+册-)|V 里-W RLet?/=0,we have that|fn(x)加|s(l+6).Henc

36、e/九(力)1/(rr),n 7 oo.Then-f-fn(y)+/)|0 e./G Lipa since|/n|0,we have6一/fn)-0,n 0.And limjo 厂加4九)=0,since fn C lipa,we get that厂。5(/)厂0期(%)+厂05(/%)-0,八-oo,8-o.Hence f G lip a,i.e.lip a is closed.23.V/i+/2eUD V(加,ri)n V(坛42)n n V(膈,rn).Then|/i+/2-hi n,/i=l,2,-n.Let 九u;=v偿今?,w=p、/i=i5=v得-短w=Qut /2=1ThenI

37、=Qi+一殳|V72-fy-y+y|=|fl+h 殳|y-In other words,九 e U|,/2 e U,Vz=So 九 e Wn/2 e W2.VpiWi,。2 e W2,gi+92 一九|=51+52-12Hence gi+g Vz=1,n.We obtain pi+2 U,i.e.W1+W2 CU.We get the conclusion that addition is r-continuous.Choose f(x)=x2,x e(0,1),thus|/(x)|0,(1+s)-x2 1 when-7=x 1.So we obtain that(1+s)/(x)串 V(4

38、1).We get the conclusion that scalar multiplication is not T-continuous.24.In euclidean space R2,we choose V just as the graph 1.V is not convex,obviously,W=U|Q|5,aGRis not convex.In euclidean space R,assume U=(-)U(1,2)U(2,1),then U is notconvex,obviously A=U,and A is not balanced.13P531.Note that X

39、=U9 1 En,where dimEn cx3,Vn and dimX=oc,so every En is a proper closed subspace of X.Since proper subspace does not have interior point of X,En is nowhere dense.Hence X is of the first category.Suppose X is an F-space of infinite dimension with countable Hamel ba-sis ei,e2,en,Vx e=EXi&e.Denote Fn=sp

40、anei,62,en.Then X=Fn)and therefore X is of the first cat-egory.While X is an F-space,X should be of the second category.This is a contradiction.Consequently,no infinite-dimensional F-space has countable Hamel basis.2.We construct the set like Cantor set.Write Ao=0,1.i)In the middle of the interval w

41、e take an open interval JD;?with measure 卜 the rest interval we call them En and E%respectively.ii)In the middle of E”we take an open interval with measure 晟,i=1,2.We call the rest interval which Bn,E12 have taken out D*,E21,E22,石23,石24iii)Do it like this,we have*:12=1,,2Let Bi=Uti Dij then is an op

42、en set.=A0Bi,then Ai is closed,and just as Cantor set Ai is nowhere dense.00 11 3|4|=|4|-0|=i-2-就=1,|3|=nliv)We do step for every D thus we get and nowhere denseset A2 which with measure|xDo it like this we finally get nowhere dense sets An,An=x Let F=4九,then F is of the first category in the unit i

43、nterval.Furthermore|F|=E14I=L 口4.(a)Denote En=于:J;f(x)dx n.Suppose/m C En,|fm-f 0,/G En.Then fm converges to f in the sense of measure,and therefore there exists subsequence/mJ,such that,frnj oc.f(x)dx=liminf|/m(x)|2cZx liminf fm(x)2dx 0|0./e 0,3m n,such that,F C x e 0,1:f(x)0,and F=Let g=*XF(X).The

44、nhili=XFdx=.=Jo 8 mhll2=/也=-=mn.f(x)-g(x)2dxJo于3)2dx+2 f(x)g(x)dx+glJO J FIIPII2=mnThat is,/+g En.In other words,f is not an interior point of En in L1.Hence,En has no interior points in L1 and hereby is nowhere dense.Meanwhile L2=En)so L2 is of the first category.(b)Since gn=n%0,n-3(x),when/e L2,n

45、oc,17M C.Obviously,An is linear.Vn,Vs 0,when ll/lli s/n,we have|An(/)|=f(x)dx nfi L1 is obviously linear.Note that J;fxdx|/|2-1=|/|2,we conclude id is continuous.Pick/(x)=x E L1L2,and then id is not an on-to mapping.Since L2 is an F-space,with the help of Theorem 2.11,15we can get that if L2 is of t

46、he second category in L1,zcZ(L2)=L1.This is a contradiction.So L2 is of the first category in L1.Through the same proof we can get the conclusion that Lq is of the first category in Lp,where p q.5.1Suppose 0 p q.If x lp,i.e.,xp=x(n)p)N,|x(n)|1.Hence x(n)q|x(n)|p,andOO Q I/F)nN-l/oo q R which is obvi

47、ously linear.When|x|p 1,we have|x(n)|1,Vn.Then xq (|x|p),using x(n)q x(n)p.So id is con-tinuous.We can come to our conclusion noticing that lp is an F-space and by means of Theorem 2.11.6.V/e L2(T),|/(X)-/He-1|2Denote gn(x)=fn)einx e L2(T).n:n (A/)(0)=f 7n/(n).n=(x)|)is a Banach space with the supre

48、mum norm.So(C(T),|)is anF-space.Obviously,T is a linear mapping.Vfm C C(T),fm/,thuslim 加=/(x)e C(T),andOOlim L(/m)=lim V 7n/mH rriTg rriTg z/n=oo oc oc=lim/mH=V 7n/H,z/moo zrn=_g n=-gsince/m uniformly converge.Solim“加)=卬).rngAccording to Theorem 2.15 and its remark,we know that L is continuous.By Ri

49、esz representation theorem,there is a complex Borel measure/on T,such that L(/)=/*d匹 that is卬)=I e-*如.ForLef=f H,n=(x)we have7n=yAssume yn=f eznewhere is a complex Borel measure on T.Without loss of generality,we only consider(T)=1.Let7(x)=e-5幽 e i(T).17then 7n=7(n),(n G Z).Write(A1)(n)=6(n)*f),wher

50、e f e C(T),so A/e C(T).Hence(A/)A(x)=$(/)f(x)=7(x)-f(x),that is8.For all n e N,(A/)A(n)=7n/(n),n e Z.Eg=叁*/nTherefore,every infinite point sequence in 0,6 1,6 2,一 converges to 0.So K is selsequentially compact and hereby compact(Z2 is a metric space).m nHence Vc e K,Amx is bounded.However,Amxm=m is

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服