1、合肥第45中七年级下册数学期末试卷综合测试(Word版 含答案)一、解答题1如图1,已ABCD,CA(1)求证:ADBC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究BAE,CDE,E之间的数量关系,并证明(3)如图3,若C90,且点E在线段BC上,DF平分EDC,射线DF在EDC的内部,且交BC于点M,交AE延长线于点F,AED+AEC180,直接写出AED与FDC的数量关系: 点P在射线DA上,且满足DEP2F,DEAPEADEB,补全图形后,求EPD的度数2如图1,点在直线上,点在直线上,点在,之间,且满足(1)证明:;(2)如图2,若,点在线段上,连接,且,试判
2、断与的数量关系,并说明理由;(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则_3如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系4点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求
3、证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)5如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由二、
4、解答题6已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,点E、F均落在直线MN上(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题请你根据小丽的思考,写出解决这一问题的过程(2)将三角形DEF沿着NM的方向平移,如图2,求证:;(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则_(用含的代数式表示)7如图1所示:点E为BC上一点,AD,ABCD(1)直接写出ACB与BED的数量关系;(2)如图2,ABCD,BG平分ABE,BG的反向延长线与EDF的平分线交于H点,若DEB
5、比GHD大60,求DEB 的度数;(3)保持(2)中所求的DEB的度数不变,如图3,BM平分EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由(本题中的角均为大于0且小于180的角)8如图,平分,设为,点E是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的度数(用含n和的代数式表示)9已知:和同一平面内的点(1)如图1,点在边上,过作交于,交于根据题意,在图1中补全图形,请写出与的数量关系,并说明理由;(2)如图2,点在的延长线上,请判断与的位置关系,并说明理由(3)如图3,点是外部的一
6、个动点过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形10综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形是直角三角形,操作发现:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由三、解答题11(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)
7、如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由12阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120,40,20,这个三角形就是一个“梦想三角形”反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍(1)如果一个“梦想三角形”
8、有一个角为108,那么这个“梦想三角形”的最小内角的度数为_(2)如图1,已知MON60,在射线OM上取一点A,过点A作ABOM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若ACB=80判定AOB、AOC是否是“梦想三角形”,为什么?(3)如图2,点D在ABC的边上,连接DC,作ADC的平分线交AC于点E,在DC上取一点F,使得EFC+BDC180,DEFB若BCD是“梦想三角形”,求B的度数13如图,平分,B=450,C=730 (1) 求的度数;(2) 如图,若把“”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;(3) 如图,若把“”变成“平分”
9、,其它条件不变,的大小是否变化,并请说明理由14模型与应用.(模型)(1)如图,已知ABCD,求证1MEN2360. (应用)(2)如图,已知ABCD,则1+2+3+4+5+6的度数为 如图,已知ABCD,则1+2+3+4+5+6n的度数为 (3)如图,已知ABCD,AM1M2的角平分线M1 O与CMnMn1的角平分线MnO交于点O,若M1OMnm在(2)的基础上,求2+3+4+5+6n1的度数(用含m、n的代数式表示)15如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由 如图,为线段上一
10、定点,点为直线上一动点且与的位置关系保持不变,当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由【参考答案】一、解答题1(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根解析:(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根据平行线的性质得ABCDEF
11、,然后由两直线平行内错角相等可得结论;(3)根据AED+AEC=180,AED+DEC+AEB=180,DF平分EDC,可得出2AED+(90-2FDC)=180,即可导出角的关系;先根据AED=F+FDE,AED-FDC=45得出DEP=2F=90,再根据DEA-PEA=DEB,求出AED=50,即可得出EPD的度数【详解】解:(1)证明:ABCD,A+D=180,C=A,C+D=180,ADBC;(2)BAE+CDE=AED,理由如下:如图2,过点E作EFAB,ABCDABCDEFBAE=AEF,CDE=DEF即FEA+FED=CDE+BAEBAE+CDE=AED;(3)AED-FDC=4
12、5;AED+AEC=180,AED+DEC+AEB=180,AEC=DEC+AEB,AED=AEB,DF平分EDCDEC=2FDCDEC=90-2FDC,2AED+(90-2FDC)=180,AED-FDC=45,故答案为:AED-FDC=45;如图3,AED=F+FDE,AED-FDC=45,F=45,DEP=2F=90,DEA-PEA=DEB=DEA,PEA=AED,DEP=PEA+AED=AED=90,AED=70,AED+AEC=180,DEC+2AED=180,DEC=40,ADBC,ADE=DEC=40,在PDE中,EPD=180-DEP-AED=50,即EPD=50【点睛】本题主
13、要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键2(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CAN,ACF,BCF,根据解析:(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CAN,ACF,BCF,根据ADBC,得到DAC=120,求出CAE即可得到结论;(3)作CFST,设CBT=,得到CBT=BCF=,分别表示出CAN和CAE,即可得到比值【详解】解:
14、(1)如图,连接,(2),理由:作,则 如图,设,则,即(3)作,则 如图,设,则,故答案为【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式3(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,AC
15、BCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键4(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长
16、线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如图1中,过点E作ETAB由平移可得ABCD,ABET,AB
17、CD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF,BFD=【点睛】本题属于几何变换综合题,考查了平行线的性
18、质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型5(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20解析:(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时
19、,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=Q
20、CG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是
21、解题的关键二、解答题6(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到D解析:(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到DEF=ECA=,进而得到,根据三角形内角和即可求解【详解】解:(1)过点C作, , ,; (2)解:,又,;(3)如图三角形DEF即为所求作三角形 ,由(2)得,DEAC,DEF=ECA=,ACB=, ,A=
22、180-=故答案为为:【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键7(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABE解析:(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABES推出,再根据ABTH,ABCD推出,最后根据比大得出的度数;(3)如图3,过点E作EQDN
23、,根据得出的度数,根据条件再逐步求出的度数【详解】(1)如答图1所示,延长DE交AB于点FABCD,所以,又因为,所以,所以ACDF,所以因为,所以(2)如答图2所示,过点E作ESAB,过点H作HTAB设,因为ABCD,ABES,所以,所以,因为ABTH,ABCD,所以,所以,因为比大,所以,所以,所以,所以(3)不发生变化如答图3所示,过点E作EQDN设,由(2)易知,所以,所以,所以,所以【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键8(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得
24、的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质由可计算出的度数,再
25、根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内角互补两直线平行,内错角相等合理应用平行线的性质是解决本题的关键9(1)图见解析,理由见解析;(2),理由见解析;(3)图见解析,或【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,理由见
26、解析;(2),理由见解析;(3)图见解析,或【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得;(3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得【详解】(1)由题意,补全图形如下:,理由如下:,;(2),理由如下:如图,延长BA交DF于点O,;(3)由题意,有以下两种情况:如图3-1,理由如下:,由对顶角相等得:,;如图3-2,理由如下:,【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键
27、10(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1解析:(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC601,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2
28、过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又 ,【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键三、解答题11(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB
29、=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+B
30、AD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, E+ECB=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用12(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等
31、于180,如果一个“梦想三角形”有一个角为108,解析:(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,可得另两个角的和为72,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180108108336,72(13)18,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出ABO、OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到EFCADC,根据平行线的性质得到DEFADE,推出DEBC,得到CDEBCD,根据角平分线的定义
32、得到ADECDE,求得BBCD,根据“梦想三角形”的定义求解即可【详解】解:当108的角是另一个内角的3倍时,最小角为180108108336,当18010872的角是另一个内角的3倍时,最小角为72(13)18,因此,这个“梦想三角形”的最小内角的度数为36或18故答案为:18或36(2)AOB、AOC都是“梦想三角形” 证明:ABOM,OAB90,ABO90MON30,OAB3ABO,AOB为“梦想三角形”, MON60,ACB80,ACBOACMON,OAC806020,AOB3OAC,AOC是“梦想三角形” (3)解:EFCBDC180,ADCBDC180,EFCADC,ADEF, D
33、EFADE,DEFB,BADE,DEBC, CDEBCD,AE平分ADC,ADECDE,BBCD,BCD是“梦想三角形”,BDC3B,或B3BDC, BDCBCDB180,B36或B【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键13(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DAE=90-ADE即可求出DAE解析:(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DA
34、E=90-ADE即可求出DAE的度数(2)求出ADE的度数,利用DFE=90-ADE即可求出DAE的度数(3)利用AE平分BEC,AD平分BAC,求出DFE=15即是最好的证明【详解】(1)B=45,C=73,BAC=62,AD平分BAC,BAD=CAD=31,ADE=B+BAD=45+31=76,AEBC,AEB=90,DAE=90-ADE=14(2)同(1),可得,ADE=76,FEBC,FEB=90,DFE=90-ADE=14(3)的大小不变.=14理由: AD平分 BAC,AE平分BECBAC=2BAD,BEC=2AEB BAC+B+BEC+C =3602BAD+2AEB=360-B-
35、C=242BAD+AEB=121 ADE=B+BADADE=45+BADDAE=180-AEB-ADE=180-AEB-45-BAD=135-(AEB+BAD)=135-121=14【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.14(1)证明见解析;(2)900 ,180(n1);(3)(180n1802m) 【详解】【模型】(1)证明:过点E作EFCD,ABCD,EFAB,1MEF解析:(1)证明见解析;(2)900 ,180(n1);(3)(180n1802m) 【详解】【模型】(1)证明:过点E作EFCD,ABCD,EFAB,1MEF180,同理2NEF
36、18012MEN360 【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得1+2+3+4+5+6=1805=900;由上面的解题方法可得:1+2+3+4+5+6n=180(n1),故答案是:900 , 180(n1);(3)过点O作SRAB,ABCD,SRCD,AM1OM1OR同理C MnOMnORA M1OCMnOM1ORMnOR,A M1OCMnOM1OMnm,M1O平分AM1M2,AM1M22A M1O,同理CMnMn-12CMnO,AM1M2CMnMn-12AM1O2CMnO2M1OMn2m,又A M1M22+3+4+5+6n1CMnMn
37、-1180(n1),2+3+4+5+6n1(180n1802m)点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要15(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再解析:(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再由EAC+ACE=90可知BAC+ACD=18
38、0,故可得出结论;(2)过E作EFAB,根据平行线的性质可知EFABCD,BAE=AEF,FEC=DCE,故BAE+ECD=90,再由MCE=ECD即可得出结论;(3)根据ABCD可知BAC+ACD=180,QPC+PQC+PCQ=180,故BAC=PQC+QPC试题解析:证明:(1)CE平分ACD,AE平分BAC,BAC=2EAC,ACD=2ACEEAC+ACE=90,BAC+ACD=180,ABCD; (2)BAE+MCD=90证明如下:过E作EFABABCD,EFABCD,BAE=AEF,FEC=DCEE=90,BAE+ECD=90MCE=ECD,BAE+MCD=90; (3)BAC=PQC+QPC理由如下:如图3:ABCD,BAC+ACD=180QPC+PQC+PCQ=180,BAC=PQC+QPC; PQC+QPC+BAC=180理由如下:如图4:ABCD,BAC=ACQPQC+PCQ+ACQ=180,PQC+QPC+BAC=180点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100