1、2022年人教版七7年级下册数学期末试卷及解析一、选择题125的算数平方根是AB5CD52下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( )A第一象限B第二象限C第三象限D第四象限4下列四个命题其中正确的个数是( )对顶角相等;在同一平面内,若,与相交,则与也相交;邻补角的平分线互相垂直;在同一平面内,垂直于同一条直线的两条直线互相垂直A1个B2个C3个D4个5一副直角三角尺叠放如图1所示,现将45的三角尺固定不动,将含30的三角尺绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,则()其它所有可能符
2、合条件的度数为( )A60和135B60和105C105和45D以上都有可能6给出下列四个说法:一个数的平方等于1,那么这个数就是1;4是8的算术平方根;平方根等于它本身的数只有0;8的立方根是2其中,正确的是()ABCD7如图,分别交,于点,若,则的度数为( )ABCD8如图,一个粒子在第一象限内及x轴y轴上运动,在第一分钟,它从原点运动到点;第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x轴y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( )ABCD九、填空题9若,则x+y+z=_十、填空题10已知点关于轴的对称点为,关于轴的对
3、称点为,那么点的坐标是_十一、填空题11如图,已知/,和的角平分线交于点F,=_.十二、填空题12如图,平分,交于,若,则的度数是_十三、填空题13如图所示,是用一张长方形纸条折成的,如果,那么_十四、填空题14将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是_十五、填空题15已知点M在y轴上,纵坐标为4,点P(6,4),则OMP的面积是_十六、填空题16如图,在直角坐标系中,A(1,3),B(2,0),第一次将AOB变换成OA1B1,A1(2,3),B1(4,0);第二次将OA1B1变换成OA2B2,A2(4,3),B2(8,0),第三次将OA2B2变换成OA
4、3B3,则B2021的横坐标为_十七、解答题17(1)已知,求x的值;(2)计算:.十八、解答题18已知m+n=2,mn=-15,求下列各式的值(1);(2)十九、解答题19如图,求度数完成说理过程并注明理由解:,_( )又,_( )( ),_度二十、解答题20与在平面直角坐标系中的位置如图(1)分别写出下列各点的坐标: ; ; ;(2)说明由经过怎样的平移得到?答:_(3)若点是内部一点,则平移后内的对应点的坐标为_;(4)求的面积二十一、解答题21已知的整数部分为a,小数部分为b(1)求a,b的值:(2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由二十二、解答题
5、22数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由二十三、解答题23如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:M
6、CADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数二十四、解答题24如图,两个形状,大小完全相同的含有30、60的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转(1)如图1,DPC 度我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10逆时针旋转一周(0旋转360),问旋转时间t为多少时,这两个三角形是“孪生三角形”(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3/秒,同时三角板PBD的边PB从
7、PM处开始绕点P逆时针旋转,转速2/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动)设两个三角板旋转时间为t秒,以下两个结论:为定值;BPN+CPD为定值,请选择你认为对的结论加以证明二十五、解答题25如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由【参
8、考答案】一、选择题1D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是1,i是一个虚数,是复数的基本单位.【详解】,25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改
9、变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3B【分析】根据向下平移,纵坐标减,求出点的坐标,再根据各象限内点的特征解答【详解】解:设点P纵坐标为y,点向下平移4个单位后的坐标是,点的坐标为,点在第二象限故选
10、:B【点睛】本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求出点的坐标是解题的关键4D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答【详解】对顶角相等,正确;在同一平面内,若,与相交,则与也相交,正确;邻补角之和为180,所以它们平分线的夹角为,即邻补角的平分线互相垂直,正确;在同一平面内,垂直于同一条直线的两条直线互相垂直,正确故选:D【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键5D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论【详解】解:如图当时,;当时,;当
11、 时,;当时, ,故选:【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键6D【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可【详解】解:(1)21,一个数的平方等于1,那么这个数就是1,故错误;4216,4是16的算术平方根,故错误,平方根等于它本身的数只有0,故正确,8的立方根是2,故错误故选:D【点睛】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键7B【分析】根据平行线的性质和对顶角相等即可得2的度数【详解】解:,2FHD,FHD
12、139,239故选:B【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质8B【分析】找出粒子运动规律和坐标之间的关系即可解题【详解】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了212分钟,将向左运动,(2,2)表示粒子运动了62解析:B【分析】找出粒子运动规律和坐标之间的关系即可解题【详解】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了212分钟,将向左运动,(2,2)表示粒子运动了623分钟,将向下运动,(3,3)表示粒子运动了1234分钟,将向左运动,.于是会出现:(44,44)点粒子运动了44451980分钟,此时粒子将会向下运动,
13、在第2021分钟时,粒子又向下移动了2021198041个单位长度,粒子的位置为(44,3),故选:B【点睛】本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律九、填空题96【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可【详解】解:x-1=0,y-2=0,z-3=0,x=1,y=2,z=3x+y+z=1+2+3=6解析:6【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可【详解】解:x-1=0,y-2=0,z-3=0,x=1,y=2,z=3x+y+z=1+2+3=6【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0
14、十、填空题10【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴的对称点为,则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键十一、填空题11135;【分析】连接BD,根据三
15、角形内角和定理得出C+CBD+CDB=180,再由BCCD可知C=90,故CBD+CDB=90,再由ABDE可知ABD+BDE=180解析:135;【分析】连接BD,根据三角形内角和定理得出C+CBD+CDB=180,再由BCCD可知C=90,故CBD+CDB=90,再由ABDE可知ABD+BDE=180,故CBD+CDB+ABD+BDE =270,再由ABC和CDE的平分线交于点F可得出CBF+CDF的度数,由四边形内角和定理即可得出结论【详解】解:连接BD,C+CBD+CDB=180,BCCD,C=90,CBD+CDB=90ABDE,ABD+BDE=180,CBD+CDB+ABD+BDE=
16、90+180=270,即ABC+CDE=270ABC和CDE的平分线交于点F,CBF+CDF=270=135,BFD=360-90-135=135故答案为135【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质十二、填空题1225【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为:2
17、5.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.十三、填空题1364【分析】如图,根据两直线平行,同旁内角互补求出3,再根据翻折变换的性质列式计算即可得解【详解】解:长方形的对边互相平行,3180118012852,由翻解析:64【分析】如图,根据两直线平行,同旁内角互补求出3,再根据翻折变换的性质列式计算即可得解【详解】解:长方形的对边互相平行,3180118012852,由翻折的性质得,2(1803)(18052)64故答案为:64【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键十四、填空题14【分析】根据数的排列方
18、法可知,第一排:1个数,第二排2个数第三排3个数,第四排4个数,第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数第三排3个数,第四排4个数,第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+19+9=199个数,即1,中第三个数 :,的相反数为故答案为【点睛】此题主要考查了数字的变
19、化规律,这类题型在中考中经常出现对于找规律的题目找准变化是关键十五、填空题15【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612故答案为12【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键十六、填空题16【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由
20、此问题可求解【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得:,B2021的横坐标为;故答案为【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律十七、解答题17(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【解析:(1)x=3或x=
21、-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.十八、解答题18(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案【详解】解:(1)=-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案【详解】解:(1)=-11;(2)=68【点睛】此题
22、主要考查了完全平方公式,正确应用完全平方公式是解题关键十九、解答题193;两直线平行,同位角相等;DG;内错角相等,两直线平行;BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得2=3,通过等量代换得出1=3,再根据内错角相等解析:3;两直线平行,同位角相等;DG;内错角相等,两直线平行;BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得2=3,通过等量代换得出1=3,再根据内错角相等,两直线平行,得出ABDG,然后根据两直线平行,同旁内角互补解答即可【详解】解:EFAD,2=3(两直线平行,同位角相等)又1=2,1=3,ABDG(内错角相等
23、,两直线平行)AGD+BAC=180(两直线平行,同旁内角互补)AGD=110,BAC=70度故答案为:3;两直线平行,同位角相等;DG;内错角相等,两直线平行;BAC;两直线平行,同旁内角互补;70【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出ABDG是解题的关键二十、解答题20(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)
24、(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A的变化写出平移方法即可;(3)根据平移规律逆向写出点P的坐标;(4)利用ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解【详解】解:(1)A(-3,1);B(-2,-2);C(-1,-1);(2)向左平移4个单位,向下平移2个单位; (3)若点P(a,b)是ABC内部一点,则平移后ABC内的对应点P的坐标为:(a-4,b-2);(4)ABC的面积=2【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键二十一、解答题21(1)
25、;(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分(2)由的值,由平方差公式,得出的有理化因式即为【详解】解:(1),;(2),或【点睛】本解析:(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分(2)由的值,由平方差公式,得出的有理化因式即为【详解】解:(1),;(2),或【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握二十二、解答题22(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为
26、30列方程解析:(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积【详解】解:(1)设长为3x,宽为2x,则:3x2x=30,x=(负值舍去),3x=,2x=,答:这个长方形纸片的长为,宽为;(2)正确理由如下:根据题意得:,解得:,大正方形的面积为102=100【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键二十三、解答题23(1)证明见解析;(
27、2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1
28、)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+A
29、BF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键二十四、解答题24(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和解析:(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时
30、间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;(2)分两种情况讨论:当在上方时,当在下方时,分别用含的代数式表示,从而可得的值;分别用含的代数式表示,得到是一个含的代数式,从而可得答案【详解】解:(1)DPC180CPADPB,CPA60,DPB30,DPC180306090,故答案为90;如图11,当BDPC时,PCBD,DBP90,CPNDBP
31、90,CPA60,APN30,转速为10/秒,旋转时间为3秒;如图12,当PCBD时,PBD90,CPBDBP90,CPA60,APM30,三角板PAC绕点P逆时针旋转的角度为180+30210,转速为10/秒,旋转时间为21秒,如图13,当PABD时,即点D与点C重合,此时ACPBPD30,则ACBP,PABD,DBPAPN90,三角板PAC绕点P逆时针旋转的角度为90,转速为10/秒,旋转时间为9秒,如图14,当PABD时,DPBACP30,ACBP,PABD,DBPBPA90,三角板PAC绕点P逆时针旋转的角度为90+180270,转速为10/秒,旋转时间为27秒,如图15,当ACDP时
32、,ACDP,CDPC30,APN18030306060,三角板PAC绕点P逆时针旋转的角度为60,转速为10/秒,旋转时间为6秒,如图16,当时, 三角板PAC绕点P逆时针旋转的角度为转速为10/秒,旋转时间为秒,如图17,当ACBD时,ACBD,DBPBAC90,点A在MN上,三角板PAC绕点P逆时针旋转的角度为180,转速为10/秒,旋转时间为18秒,当时,如图1-3,1-4,旋转时间分别为:, 综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;(2)如图,当在上方时,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM302t,APN3tCPD180DPM
33、CPAAPN90t, BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误当在下方时,如图,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM APN3tCPD BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误综上:正确,错误【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键二十五、解答题25(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分AC
34、D,AE平分BAC得出BAC=2EAC,ACD=2ACE,再解析:(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再由EAC+ACE=90可知BAC+ACD=180,故可得出结论;(2)过E作EFAB,根据平行线的性质可知EFABCD,BAE=AEF,FEC=DCE,故BAE+ECD=90,再由MCE=ECD即可得出结论;(3)根据ABCD可知BAC+ACD=180,QPC+PQC+PCQ=180,故BAC=PQC+QPC试题解析:证明:(1)CE平分ACD,AE平分B
35、AC,BAC=2EAC,ACD=2ACEEAC+ACE=90,BAC+ACD=180,ABCD; (2)BAE+MCD=90证明如下:过E作EFABABCD,EFABCD,BAE=AEF,FEC=DCEE=90,BAE+ECD=90MCE=ECD,BAE+MCD=90; (3)BAC=PQC+QPC理由如下:如图3:ABCD,BAC+ACD=180QPC+PQC+PCQ=180,BAC=PQC+QPC; PQC+QPC+BAC=180理由如下:如图4:ABCD,BAC=ACQPQC+PCQ+ACQ=180,PQC+QPC+BAC=180点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100