1、数学苏教七年级下册期末解答题压轴题目及答案解析一、解答题1如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、(1)当点与点、在一直线上时,则_(2)若点与点、不在一直线上,试探索、之间的关系,并证明你的结论2如图,将一副直角三角板放在同一条直线AB上,其中ONM30,OCD45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,MN与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的
2、过程中,在第_秒时,直线MN恰好与直线CD垂直(直接写出结果)3如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由4问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:
3、(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系5直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是BAP和ABM角的平分线,(1)点A、B在运动的过程中,ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出ACB的大小.(2)如图2,将ABC沿直线AB折叠,若点C落在直线PQ上,则ABO_,如图3,
4、将ABC沿直线AB折叠,若点C落在直线MN上,则ABO_(3)如图4,延长BA至G,已知BAO、OAG的角平分线与BOQ的角平分线及其反向延长线交于E、F,则EAF ;在AEF中,如果有一个角是另一个角的倍,求ABO的度数.6如图1,已知,是直线,外的一点,于点,交于点,满足(1)求的度数;(2)如图2,射线从出发,以每秒的速度绕点按逆时针方向匀速旋转,当到达时立刻返回至,然后继续按上述方式旋转;射线从出发,以相同的速度绕点按顺时针方向旋转至后停止运动,此时射线也停止运动若射线、射线同时开始运动,设运动时间为秒当射线平分时,求的度数;当直线与直线相交所成的锐角是时,则_7已知:如图1直线、被直
5、线所截,(1)求证:;(2)如图2,点E在,之间的直线上,P、Q分别在直线、上,连接、,平分,平分,则和之间有什么数量关系,请直接写出你的结论;(3)如图3,在(2)的条件下,过P点作交于点H,连接,若平分,求的度数8(1)证明:两条平行线被第三条直线所截,一对同旁内角的角平分线互相垂直已知:如图,ABCD, 求证: 证明:(2)如图,ABCD,点E、F分别在直线AB、CD上,EMFN,AEM与CFN的角平分线相交于点O求证:EOFO(3)如图,ABCD,点E、F分别在直线AB、CD上,EMPN, MPNF,AEM与CFN的角平分线相交于点O,P102,求O的度数9已知:直线l分别交AB、CD
6、与E、F两点,且ABCD(1) 说明:1=2;(2) 如图2,点M、N在AB、CD之间,且在直线l左侧,若EMN+FNM=260,求:AEM+CFN的度数;如图3,若EP平分AEM,FP平分CFN,求P的度数;(3) 如图4,2=80,点G在射线EB上,点H在AB上方的直线l上,点Q是平面内一点,连接QG、QH,若AGQ=18,FHQ=24,直接写出GQH的度数 10已知:直线,点E,F分别在直线AB,CD上,点M为两平行线内部一点(1)如图1,AEM,M,CFM的数量关系为_;(直接写出答案)(2)如图2,MEB和MFD的角平分线交于点N,若EMF等于130,求ENF的度数;(3)如图3,点
7、G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足,设EMF=,求H的度数(用含的代数式表示)【参考答案】一、解答题1(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出解析:(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出=60,计算PFD即可;(2)根据点P是动点,分三种情况讨论:当点P在AB与CD之间时;
8、当点P在AB上方时;当点P在CD下方时,分别求出AEP、EPF、CFP之间的关系即可【详解】(1)当点与点、在一直线上时,作图如下,ABCD,FHP=60,=FHP=60,EFD=180-GEP=180-60=120,PFD=120,故答案为:120;(2)满足关系式为EPF =AEP+CFP或AEP=EPF+CFP证明:根据点P是动点,分三种情况讨论:当点P在AB与CD之间时,过点P作PQAB,如下图,ABCD,PQABCD,AEP=EPQ,CFP=FPQ,EPF=EPQ+FPQ=AEP+CFP,即EPF =AEP+CFP;当点P在AB上方时,如下图所示,AEP=EPF+EQP,ABCD,C
9、FP=EQP,AEP=EPF+CFP;当点P在CD下方时,ABCD,AEP=EQF,EQF=EPF+CFP,AEP=EPF+CFP,综上所述,AEP、EPF、CFP之间满足的关系式为:EPF =AEP+CFP或AEP=EPF+CFP,故答案为:EPF =AEP+CFP或AEP=EPF+CFP【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题2(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角解析:(1)105;(2)135;(3)
10、5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角互补即可求出CEN的度数.(3)画出图形,求出在MNCD时的旋转角,再除以30即得结果.【详解】解:(1)在CEN中,CEN=180ECNCNE=1804530=105;(2)BON30,N=30,BONN,MNCB.OCD+CEN=180,OCD=45CEN=18045=135;(3)如图,MNCD时,旋转角为360904560=165,或360(6045)=345,所以在第16530=5.5或34530=11.5秒时,直线MN恰好与直线CD垂直【点睛】
11、本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去DOM的度数.3(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再解析:(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平
12、分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再由EAC+ACE=90可知BAC+ACD=180,故可得出结论;(2)过E作EFAB,根据平行线的性质可知EFABCD,BAE=AEF,FEC=DCE,故BAE+ECD=90,再由MCE=ECD即可得出结论;(3)根据ABCD可知BAC+ACD=180,QPC+PQC+PCQ=180,故BAC=PQC+QPC试题解析:证明:(1)CE平分ACD,AE平分BAC,BAC=2EAC,ACD=2ACEEAC+ACE=90,BAC+ACD=180,ABCD; (2)BAE+MCD=90证明如下:过E作EFABABCD,EFABCD,BA
13、E=AEF,FEC=DCEE=90,BAE+ECD=90MCE=ECD,BAE+MCD=90; (3)BAC=PQC+QPC理由如下:如图3:ABCD,BAC+ACD=180QPC+PQC+PCQ=180,BAC=PQC+QPC; PQC+QPC+BAC=180理由如下:如图4:ABCD,BAC=ACQPQC+PCQ+ACQ=180,PQC+QPC+BAC=180点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键4(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,
14、=C解析:(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点
15、P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决5(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形的外角的性质得到解析:(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直
16、相交于O,得到AOB90,根据三角形的外角的性质得到PAB+ABM270,根据角平分线的定义得到BACPAB,ABCABM,于是得到结论;(2)由于将ABC沿直线AB折叠,若点C落在直线PQ上,得到CABBAQ,由角平分线的定义得到PACCAB,即可得到结论;根据将ABC沿直线AB折叠,若点C落在直线MN上,得到ABCABN,由于BC平分ABM,得到ABCMBC,于是得到结论;(3)由BAO与BOQ的角平分线相交于E可得出E与ABO的关系,由AE、AF分别是BAO和OAG的角平分线可知EAF90,在AEF中,由一个角是另一个角的倍分情况进行分类讨论即可【详解】解:(1)ACB的大小不变,直线M
17、N与直线PQ垂直相交于O,AOB90,OAB+OBA90,PAB+ABM270,AC、BC分别是BAP和ABM角的平分线,BACPAB,ABCABM, BAC+ABC(PAB+ABM)135,ACB45;(2)将ABC沿直线AB折叠,若点C落在直线PQ上,CABBAQ,AC平分PAB,PACCAB,PACCABBAO60,AOB90,ABO30,将ABC沿直线AB折叠,若点C落在直线MN上,ABCABN,BC平分ABM,ABCMBC,MBCABCABN,ABO60,故答案为:30,60;(3)AE、AF分别是BAO与GAO的平分线,EAOBAO,FAOGAO,EEOQEAO(BOQBAO)AB
18、O,AE、AF分别是BAO和OAG的角平分线,EAFEAO+FAO(BAO+GAO)90在AEF中,BAO与BOQ的角平分线相交于E,EAO= BAO,EOQ=BOQ, E=EOQ-EAO=(BOQ-BAO)=ABO,有一个角是另一个角的倍,故有:EAFF,E30,ABO60;FE,E36,ABO72;EAFE,E60,ABO120(舍去);EF,E54,ABO108(舍去);ABO为60或72【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定
19、要注意分类讨论的思想6(1);(2);【分析】(1)根据,可以得到,即,再根据三角形外角定理求解即可(2)射线平分时,可知此时,根据题意可以确定运动时间t=3s或t=9s,从而计算的度数即可;用含t的解析:(1);(2);【分析】(1)根据,可以得到,即,再根据三角形外角定理求解即可(2)射线平分时,可知此时,根据题意可以确定运动时间t=3s或t=9s,从而计算的度数即可;用含t的代数式表示出所成的角度,然后进行动态分析求解即可【详解】解(1),又(2)射线平分射线从出发,以相同的速度绕点按顺时针方向旋转至后停止运动,此时射线也停止运动,运动的总时间射线从出发,以每秒的速度绕点按逆时针方向匀速
20、旋转,当到达时立刻返回至,然后继续按上述方式旋转第一次,第二次时,第三次时,以此类推故当第一次,故第二次时,故第三次时,如图所示直线与直线相交所成的锐角是,又第一种情况,当时当时解得当解得第二种情况,当此时t无解,第三种情况当同理可以计算出,综上所述:【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够正确的分析动态过程7(1)证明见解析;(2),理由见解析;(3)【分析】(1)只需要证明即可证明;(2)作由平行线的性质即可证明,同理可证明,由此再根据角平分线的定义和平角的性质可得;(3)设,则,想办解析:(1)证明见解析;(2),理由见解析;(3)【分析】(1)只需要证明即可证明;(2
21、)作由平行线的性质即可证明,同理可证明,由此再根据角平分线的定义和平角的性质可得;(3)设,则,想办法构建方程即可解决问题;【详解】解:(1)如图1中,(2)结论:如图2中,理由:作,同理可证:,平分,平分,;(3)设, ,平分,平分,【点睛】本题考查平行线的判定和性质,角平分线的定义等知识,(2)中能正确作出辅助线是解题关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题关键8(1)直线MN分别交直线AB、CD于点E、F,AEF和CFE的角平分线 OE、OF交于点O,OEOF,见解析;(2)见解析;(3)51【分析】(1)根据平行线的性质和角平分线定义即可证解析:(1)直线MN分别交直
22、线AB、CD于点E、F,AEF和CFE的角平分线 OE、OF交于点O,OEOF,见解析;(2)见解析;(3)51【分析】(1)根据平行线的性质和角平分线定义即可证明;(2)延长交于点,过点作交于点,结合(1)的方法即可证明;(3)延长、交于点,过点作交于点结合(1)的方法可得,再根据角平分线定义即可求出结果【详解】(1)已知:如图,直线分别交直线,于点,、分别平分、,求证:;证法,、分别平分、,;证法2:如图,过点作交直线于点,、分别平分、,;故答案为:直线分别交直线,于点,、分别平分、,;(2)证明:如图,延长交于点,过点作交于点,、分别平分、,;(3)解:如图,延长、交于点,过点作交于点,
23、由(1)证法2可知,、分别平分、,【点睛】本题考查了平行线的判定与性质,角平分线的定义,解决本题的关键是掌握平行线的判定与性质9(1)理由见解析;(2)80,40;(3)38、74、86、122【分析】(1)根据平行线的性质及对顶角的性质即可得证;(2)过拐点作AB的平行线,根据平行线的性质推理即可解析:(1)理由见解析;(2)80,40;(3)38、74、86、122【分析】(1)根据平行线的性质及对顶角的性质即可得证;(2)过拐点作AB的平行线,根据平行线的性质推理即可得到答案;过点P作AB的平行线,根据平行线的性质及角平分线的定义求得角的度数;(3)分情况讨论,画出图形,根据三角形的内角
24、和与外角的性质分别求出答案即可【详解】(1),;(2)分别过点M,N作直线GH,IJ与AB平行,则,如图:,;过点P作AB的平行线,根据平行线的性质可得:,EP平分AEM,FP平分CFN,即;(3)分四种情况进行讨论:由已知条件可得,如图: 如图:,;如图:,;如图: ,;综上所述,GQH的度数为38、74、86、122【点睛】本题考查平行线的性质,三角形外角的性质等内容,解题的关键是掌握辅助线的作法以及分类讨论的思想10(1);(2);(3)【分析】(1)过点作,利用平行线的性质可得,由,经过等量代换可得结论;(2)过作,利用平行线的性质以及角平分线的定义计算即可(3)如图中设,则,设交于证明解析:(1);(2);(3)【分析】(1)过点作,利用平行线的性质可得,由,经过等量代换可得结论;(2)过作,利用平行线的性质以及角平分线的定义计算即可(3)如图中设,则,设交于证明,求出即可解决问题【详解】(1)如图1,过点作,;(2)过作,分别平分和,;(3)如图中设,则,设交于,【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100