ImageVerifierCode 换一换
格式:DOC , 页数:46 ,大小:3.29MB ,
资源ID:4881008      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4881008.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版初一数学下册期末压轴题试题(带答案)--(一)解析.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版初一数学下册期末压轴题试题(带答案)--(一)解析.doc

1、一、解答题1如图,在平面直角坐标系中,O为坐标原点,点,其中满足,D为直线AB与轴的交点,C为线段AB上一点,其纵坐标为.(1)求的值;(2)当为何值时,和面积的相等;(3)若点C坐标为(-2,1),点M(m,-3)在第三象限内,满足,求m的取值范围.(注:表示的面积)2如图,已知,是的平分线(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围3已知,点为平面内一点,于(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2

2、)问的条件下,点、在上,连接、,且平分,平分,若,求的度数4(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数5如图,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数6已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即

3、回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 7阅读理解:计算时,若把与分别各看着一个整体,再利用分配律进行运算,可以大大简化难度过程如下:解:设为A,为B,则原式=B(1+A)A(1+B)=B+ABAAB=BA=请用上面方法计算:-8探究与应用:观察下列各式:1+3 21+3+5 21+3+5+7 21+3+5+7+9 2问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算

4、一般规律的式子;(3)根据规律计算:(1)+(3)+(5)+(7)+(2019)(结果用科学记数法表示)9规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 222,(3)(3)(3)(3)等,类比有理数的乘方,我们把222记作2,读作“2的圈 3 次方,”(3)(3)(3)(3)记作(3),读作:“(3)的圈 4 次方”一般地,把个记作 a,读作 “a 的圈 n次方”(初步探究)(1)直接写出计算结果:2,()(深入思考)2 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结

5、果直接写成幂的形式5;()(3)猜想:有理数 a(a0)的圈n(n3)次方写成幂的形式等于多少(4)应用:求(-3)8(-3)-()9()10下列等式:,将以上三个等式两边分别相加得:(1)观察发现:_ (2)初步应用:利用(1)的结论,解决以下问题“把拆成两个分子为1的正的真分数之差,即 ;把拆成两个分子为1的正的真分数之和,即 ;( 3 )定义“”是一种新的运算,若,求的值11据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗

6、庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是_位数;(2)由32768的个位上的数是8,请确定的个位上的数是_,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_;(3)已知和分别是两个数的立方,仿照上面的计算过程,请计算:;12对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则例如:,(1)计算: ; ;(2)求满足的实数的取值范围,求满足的所有非负实数的值;(3)若关于的方程有正整数解,求非负实数的取值范围13如图,已知点,(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求

7、满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标_(用含的式子表示)14如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值15在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标; (2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应, 与对应),连接如图2

8、所示.若表示BCD的面积),求点、的坐标; (3)在(2)的条件下,在轴上是否存在一点,使表示PCD的面积)?若存在,求出点的坐标; 若不存在,请说明理由.16如图,数轴上两点A、B对应的数分别是1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数(1)3,0,2.5是连动数的是 ;(2)关于x的方程2xmx+1的解满足是连动数,求m的取值范围 ;(3)当不等式组的解集中恰好有4个解是连动整数时,求a的取值范围17如图1,在直角坐标系中直线与、轴的交点分别为,且满足.(1)求

9、、的值;(2)若点的坐标为且,求的值;(3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围18在平面直角坐标系中,点,的坐标分别为,现将线段先向上平移3个单位,再向右平移1个单位,得到线段,连接,(1)如图1,求点,的坐标及四边形的面积; 图1(2)如图1,在轴上是否存在点,连接,使?若存在这样的点,求出点的坐标;若不存在,试说明理由;(3)如图2,在直线上是否存在点,连接,使?若存在这样的点,直接写出点的坐标;若不存在,试说明理由 图2(4)在坐标平面内是否存在点,使?若存在这样的点,直接写出

10、点的坐标的规律;若不存在,请说明理由19如图,学校印刷厂与A,D两地有公路、铁路相连,从A地购进一批每吨8000元的白纸,制成每吨10000元的作业本运到D地批发,已知公路运价1.5元/(tkm),铁路运价1.2元/(tkm)这两次运输支出公路运费4200元,铁路运费26280元(1)白纸和作业本各多少吨?(2)这批作业本的销售款比白纸的购进款与运输费的和多多少元?20历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示例如f(x)x23x5,把x某数时多项式的值用f(某数)来表示例如x1时多项式x23x5的值记为f(1)(1)23(1)57.(1)已知g(x)2x23x1,分别求出g

11、(1)和g(2);(2)已知h(x)ax32x2ax6,当h()a,求a的值;(3)已知f(x)2(a,b为常数),当k无论为何值,总有f(1)0,求a,b的值21某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元 (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案22七年(1)

12、(2)两班各40人参加垃圾分类知识竞赛,规则如图比赛中,所有同学均按要求一对一连线,无多连、少连(1)分数5,10,15,20中,每人得分不可能是_分(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数问(1)班有多少人得满分?若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?23已知,在平面直角坐标系中,三角形三个顶点的坐标分别为,轴,且、满足(1)则_;_;_;(2)如图1,在轴上是否存在点,使三角形的面积等于三角形的面积?若存在,请求出点的坐标;若不存在,请说明理由;(3)如

13、图2,连接交于点,点在轴上,若三角形的面积小于三角形的面积,直接写出的取值范围是_24如图,平面直角坐标系中,已知点A(a,0),B(0,b),其中a,b满足将点B向右平移24个单位长度得到点C点D,E分别为线段BC,OA上一动点,点D从点C以2个单位长度/秒的速度向点B运动,同时点E从点O以3个单位长度/秒的速度向点A运动,在D,E运动的过程中,DE交四边形BOAC的对角线OC于点F设运动的时间为t秒(0t10),四边形BOED的面积记为S四边形BOED(以下面积的表示方式相同)(1)求点A和点C的坐标;(2)若S四边形BOEDS四边形ACDE,求t的取值范围;(3)求证:在D,E运动的过程

14、中,SOEFSDCF总成立25某小区准备新建个停车位,以解决小区停车难的问题已知新建个地上停车位和个地下停车位共需万元:新建个地上停车位和个地下停车位共需万元,(1)该小区新建个地上停车位和个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过万元而不超过万元,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.26如图,在平直角坐标系中,ABO的三个顶点为A(a,b),B(a,3b),O(0,0),且满足|b2|0,线段AB与y轴交于点C(1)求出A,B两点的坐标;(2)求出ABO的面积;(3)如图,将线段AB平移至B点的对应点落在x轴的正半

15、轴上时,此时A点的对应点为,记的面积为S,若24S32,求点的横坐标的取值范围27在平面直角坐标系中,点,且,满足(1)请用含的式子分别表示,两点的坐标;(2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围28某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)车型甲乙丙汽车运载量(公斤/辆)600800900汽车运费(元/辆)500600700(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需

16、甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?29某超市投入31500元购进A、B两种饮料共800箱,饮料的成本与销售价如下表:(单位:元/箱)类别成本价销售价A4264B3652(1)该超市购进A、B两种饮料各多少箱?(2)全部售完800箱饮料共盈利多少元?(3)若超市计划盈利16200元,且A类饮料售价不变,则B类饮料销售价至少应定为每箱多少元?30如图,已知,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线

17、,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.【参考答案】*试卷处理标记,请不要删除一、解答题1(1);(2)当时,和面积的相等;(3)m的取值范围是【分析】(1)利用非负数的性质求出a,b,c即可(2)设点D的坐标为(0,y),根据面积关系,构建方程求出y,再根据BOC和AOD面积的相等,构建方程求出t即可(3)分两种情形:当-2m0时,如图1中,当m-2时,如图2中,根据SMOC5,构建不等式求解即可【详解】解:(1)|a-2|+(b-3)2+=0,又|a-2|0,(b-3)20,0,a=2,b=3,c=-4;(2)设点D的坐标为(0,y),则SBOD=BO

18、OD=4y2y,SAOD=xAOD=2y=y,SAOB=OByA=436,SBOD+SAOD=SAOB,即2y+y=6,解得y=2,即点D的坐标为(0,2),SBOC=BOyc=4t=2t,SAOD=xAOD=22=2,BOC和AOD面积的相等,即2t=2,解得t=1,当t=1时,BOC和AOD面积的相等;(3)当-2m0时,如图1中,过点C作CF轴于点F,过点M作GE轴于点E,过点C作CG轴交GE于点G,则四边形CGEF为矩形,SCGEF=24=8,SCFO=211,SEMO=(0m)3=m,SCMG=(m+2)42(m+2),SMOC=SCGEF-SCFO-SEMO-SCMG=81(m)2

19、(m+2)=3m,SMOC5,即3m5,解得m-4,这与-2m0矛盾当m-2时,如图2中,过点C作GF轴于点F,过点M作ME轴于点E,过点M作MG轴交GF于点G,则四边形MEFG为矩形,SGMEF=(0-m)4=-4m,SCFO=211,SEMO=(0m)3=m,SCMG=(2m)42(m+2),SMOC=SCGEF-SCFO-SEMO-SCMG=4m1(m)2(m+2)=3m,SMOC5,即3m5,解得m-4,综上所述,m的取值范围是m-4【点睛】本题考查了坐标与图形的性质,三角形的面积,非负数的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考压轴题2(1)90;(2)见解析

20、;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据平行线的性质及平角的定义即可得解【详解】解(1),分别平分和,;(2),即,是的平分线,又,又在的内部,平分;(3)如图,不发生变化,过,分别作,则有,不变【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键3(1)见解析;(2)见解析;(3)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3a,根据角平分线的定

21、义可得ABD=C=2a,FBC=DBC=a+45,根据三角形内角和可得BFC+FBC+BCF=180,可得AFC=BCF的度数表达式,再根据平行的性质可得AFC+NCF=180,代入即可算出a的度数,进而完成解答【详解】(1)证明:,于,;(2)证明:过作,又,;(3)设DBE=a,则BFC=3a,BE平分ABD,ABD=C=2a,又ABBC,BF平分DBC,DBC=ABD+ABC=2a+90,即:FBC=DBC=a+45又BFC+FBC+BCF=180,即:3a+a+45+BCF=180BCF=135-4a,AFC=BCF=135-4a,又AM/CN,AFC+ NCF=180,即:AFC+B

22、CN+BCF=180,135-4a+135-4a+2a=180,解得a=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键4(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OE

23、F=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=130,2=180-130=501+2=40+50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FPN=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OE

24、F+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G180(GEF+GFE)180180+【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键5(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;由(1)知,BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知(2)由题

25、(1)可知 ,再由折叠可知:,;由可知:,由(1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键6(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当30t45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒

26、时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上

27、,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题7(1);(2).【分析】根据发现的规律得出结果即可;根据发现的规律将所求式子变形,约分即可得到结果【详解】(1)设为A,为B,原式=(1+A)B(1+B)A=B+ABAAB=BA=;(2)设为A,为B,原式=(1+A)B(1+B)A=B+ABAAB=BA=【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键8(1)2、3、4、5;(2)第n个等式为1+3+5+7+(2n+1)n2;(3)1.008016106【分析

28、】(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3221+3+5321+3+5+7421+3+5+7+952故答案为:2、3、4、5;(2)第n个等式为1+3+5+7+(2n+1) (3)原式(1+3+5+7+9+2019)101021.0201106【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.9(1),-2;(2)()4,(2)8;(3);(4).【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得

29、出结果;(3)结果前两个数相除为1,第三个数及后面的数变为,则a=a()n-1;(4)将第二问的规律代入计算,注意运算顺序【详解】解:(1)2=222=,()=()()=2;(2)5=5=()4,同理得;()=(2)8;(3)a=a; (4)(-3)8(-3)-()9()=(-3)8( )7 -()9(-2)6=-3-(-)3=-3+=.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运

30、算顺序10(1);(2);( 3 )【分析】(1)利用材料中的“拆项法”解答即可;(2)先变形为,再利用(1)中的规律解题;先变形为,再逆用分数的加法法则即可分解;(3)按照定义“”法则表示出,再利用(1)中的规律解题即可【详解】解:(1)观察发现:,;故答案是:;.(2)初步应用:=;故答案是:;.( 3 )由定义可知:=.故的值为【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题11(1)两;(2)2,3;(3)24,48;【分析】(1)由题意可得,进而可得答案;(2)由只有个

31、位数是2的数的立方的个位数是8,可确定的个位上的数,由可得273264,进而可确定,于是可确定的十位上的数,进而可得答案;(3)仿照(1)(2)两小题中的方法解答即可【详解】解:(1)因为,所以,所以是一个两位数;故答案为:两; (2)因为只有个位数是2的数的立方的个位数是8,所以的个位上的数是2,划去32768后面的三位数768得到32,因为,273264,所以,所以的十位上的数是3;故答案为:2,3;(3)由103=1000,1003=1000000,1000138241000000,10100,是两位数;只有个位数是4的数的立方的个位数是4,的个位上的数是4,划去13824后面的三位数8

32、24得到13,81327,2030=24; 由103=1000,1003=1000000,10001105921000000,10100,是两位数;只有个位数是8的数的立方的个位数是2,的个位上的数是8,划去110592后面的三位数592得到110,64110125,4050,;=48【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键12(1)2,3 (2) (3)【分析】(1)根据新定义的运算规则进行计算即可;(2)根据新定义的运算规则即可求出实数的取值范围;根据新定义的运算规则和为整数,即可求出所有非负实数的值;(3)先解

33、方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围【详解】(1)2;3;(2)解得;解得为整数故所有非负实数的值有;(3)方程的解为正整数或2当时,是方程的增根,舍去当时,【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键13(1)2;(2);(3)或【分析】(1)直接利用以为底,进行求面积;(2)的面积等于的面积,需要分三种情况进行分类讨论;(3)根据推导出,然后分两种情况进行讨论,即当位于轴负半轴上时与位于轴正半轴上时【详解】解:(1)()作如下图形,进行分类讨论:当点在轴正半轴上时,;当点在轴负半轴上时,;当点在轴负半轴上时,;因此符合条件的点坐标有3个

34、,分别是(3),即与点到的距离相等,由可推出,位于轴负半轴上时,;位于轴正半轴上时,综上:点的坐标为或【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解14(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MA

35、E=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键15(1)

36、;(2);(3)存在点,其坐标为或.【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据SBCD=7(SBCD建立方程求解,即可);(3)设出点P的坐标,表示出PC用,建立方程求解即可【详解】(1)B(3,0)平移后的对应点,设,即线段向左平移5个单位,再向上平移4个单位得到线段点平移后的对应点;(2)点C在轴上,点D在第二象限,线段向左平移3个单位,再向上平移个单位,连接,;(3)存在设点,存在点,其坐标为或.【点睛】本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.16(1)3,

37、2.5;(2)4m2或0m2;(3)1a2【分析】(1)根据连动数的定义逐一判断即得答案;(2)先求得方程的解,再根据连动数的定义得出相应的不等式组,解不等式组即可求出结果;(3)先解不等式组中的每个不等式,再根据连动整数的概念得到关于a的不等式组,解不等式组即可求得答案【详解】解:(1)设点P表示的数是x,则,若点Q表示的数是3,由可得,解得:x=1或5,所以3是连动数;若点Q表示的数是0,由可得,解得:x=2或2,所以0不是连动数;若点Q表示的数是2.5,由可得,解得:x=0.5或4.5,所以2.5是连动数;所以3,0,2.5是连动数的是3,2.5,故答案为:3,2.5;(2)解关于x的方

38、程2xmx+1得:xm+1,关于x的方程2xmx+1的解满足是连动数,或,解得:4m2或0m2;故答案为:4m2或0m2;(3),解不等式,得x3,解不等式,得x1+a,不等式组的解集中恰好有4个解是连动整数,四个连动整数解为2,1,1,2,21+a3,解得:1a2,a的取值范围是1a2【点睛】本题是新定义试题,以数轴为载体,主要考查了一元一次不等式组,正确理解连动数与连动整数、列出相应的不等式组是解题的关键17(1),;(2)或;(3)【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a,b的值;(2)设直线AB与直线x1交于点N,可得N(1,5),根据SABMSAMNSBMN,

39、即可表示出SABM,从而列出m的方程(3)根据题意知,临界状态是点P落在OA和AB上,分别求出此时t的值,即可得出范围【详解】(1),解得:,(2)设直线与直线交于,设a4,b4,A(4,0),B(0,4),设直线AB的函数解析式为:ykxb,代入得,解得直线AB的函数解析式为:yx4,代入x=1得5|5m|1|5m|2|5m|,或解得:或,(3)当点P在OA边上时,则2t2,t1,当点P在AB边上时,如图,过点P作PKx轴,AKx轴交于K,则KP3t,KA2t2,3t2t2,综上所述:【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来

40、表示动点构成的线段长度是正确解题的关键18(1),;(2)存在,或;(3)存在,或;(4)存在,的纵坐标总是4或或者:点在平行于轴且与轴的距离等于4的两条直线上;或者:点在直线或直线上【分析】(1)根据点的平移规律,即可得到对应点坐标;(2)由,可以得到,即可得到P点坐标;(3)由,可以得到,结合点C坐标,就可以求得点Q坐标;(4)由,可以AB边上的高的长度,从而得到点的坐标规律【详解】(1)点,点 向上平移3个单位,再向右平移1个单位之后对应点坐标为,点 (2)存在,理由如下:即:=12或(3)存在,理由如下:即: 或(4)存在:理由如下:设中,AB边上的高为h则: 点在直线或直线上【点睛】本题考查直角坐标系中点的坐标平移规律,由点到坐标轴的距离确定点坐标等知识点,根据相关内

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服