1、 一、选择题 1.不等式组的解集是,那么m的取值范围( ) A. B. C. D. 2.若关于x的不等式组式的整数解为x=1和x=2,则满足这个不等式组的整数a,b组成的有序数对(a,b)共有( )对 A.0 B.1 C.3 D.2 3.若不等式组只有两个整数解,则m的取值范围是( ) A.1≤m<2 B.1<m≤2 C.1≤m≤2 D.m<2 4.若关于的不等式的解集是,则关于的不等式的解集是( ) A. B. C. D. 5.已知点在第三象限,则的取值范围在数轴上表示正确的是( ) A. B. C. D. 6.若关于x的不等式的正整
2、数解是1,2,3,则整数m的最大值是( ) A.10 B.11 C.12 D.13 7.若不等式组的解集为x>4,则a的取值范围是( ) A.a>4 B.a<4 C.a≤4 D.a≥4 8.不等式组只有4个整数解,则的取值范围是( ) A. B. C. D. 9.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则下列选项中,不符合条件的整数m的值是( ) A.﹣4 B.2 C.4 D.5 10.关于、的方程组的解恰好是第二象限内一个点的坐标,则的取值范围是( ) A. B. C. D. 二、
3、填空题 11.已知实数,,满足,且有最大值,则的值是__________. 12.“端午节”是我国的传统佳节,民间历来有吃粽子的习俗.某超市准备了515个豆沙粽,525个火腿粽和若干个腊肉棕,将这些粽子分成了A,B,C三类礼品盒进行包装.A类礼品盒里有4个豆沙粽,4个火腿粽和6个腊肉粽;B类礼品盒里有3个豆沙粽,5个火腿粽和6个腊肉粽;C类礼品盒里有6个豆沙粽,4个火腿粽和4个腊肉粽.已知A,B,C三类礼品盒的数量都为正整数,并且A类礼品盒少于44盒,B类礼品盒少于49盒.如果所有礼品盒里的腊肉粽的总个数为m,则m=_______________ 13.按图中程序计算,规定:从“输入一个
4、值”到“结果是否”为一次程序操作,如果程序操作进行了两次才停止,则的取值范围为_______________________. 14.若不等式组无解,则a的取值范围是______. 15.关于的方程的解为非负数,且关于的不等式组有解,则符合条件的整数的值的和为__________. 16.不等式3x﹣3m≤﹣2m的正整数解为1,2,3,4,则m的取值范围是_____. 17.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<4※x<7,且解集中有三个整数解,则整数a的取值可以是_________.
5、18.某学校举办“创文知识”竞赛,共有20道题,每一题答对得10分,答错或不答都扣5分,小聪要想得分不低于140分,他至少要答对多少道题?如果设小聪答对a题,则他答错或不答的题数为题,根据题意列不等式:___________. 19.若不等式组的解集为,则的立方根是______. 20.若关于的一元一次不等式组的解集是,那么的取值范围是______. 三、解答题 21.(发现问题)已知,求的值. 方法一:先解方程组,得出,的值,再代入,求出的值. 方法二:将①②,求出的值. (提出问题)怎样才能得到方法二呢? (分析问题) 为了得到方法二,可以将①②,可得. 令等式左边,比
6、较系数可得,求得. (解决问题) (1)请你选择一种方法,求的值; (2)对于方程组利用方法二的思路,求的值; (迁移应用) (3)已知,求的范围. 22.对,定义一种新的运算,规定:(其中).已知,. (1)求、的值; (2)若,解不等式组. 23.如图,数轴上两点A、B对应的数分别是-1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|=2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数. (1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果) (2)若k使得方程组中的
7、x,y均为连动数,求k所有可能的取值; (3)若关于x的不等式组的解集中恰好有4个连动整数,求这4个连动整数的值及a的取值范围. 24.阅读下列材料: 问题:已知x﹣y=2,且x>1,y<0 解:∵x﹣y=2.∴x=y+2, 又∵x>1∴y+2>1 ∴y>﹣1 又∵y<0 ∴﹣1<y<0① ∴﹣1+2<y+2<0+2 即1<x<2② ①+②得﹣1+1<x+y<0+2 ∴x+y的取值范围是0<x+y<2 请按照上述方法,完成下列问题: (1)已知x﹣y=3,且x>﹣1,y<0,则x的取值范围是 ;x+y的取值范围是 ; (2)已知x﹣y=a,且x<﹣b,y
8、>2b,根据上述做法得到-2<3x-y<10,求a、b的值. 25.如图所示,在平面直角坐标系中,点A,,的坐标为,,,其中,,满足,. (1)求,,的值; (2)若在轴上,且,求点坐标; (3)如果在第二象限内有一点,在什么取值范围时,的面积不大于的面积?求出在符合条件下,面积最大值时点的坐标. 26.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”. 例:已知方程2x﹣3=1与不等式x+3>0,当x=2时,2x﹣3=2×2﹣3=1,x+3=2+3=5>0同时成立,则称x=2是方程2x﹣3=1与不等式x+3>0的“理想解”. (1)已
9、知①,②2(x+3)<4,③<3,试判断方程2x+3=1的解是否是它们中某个不等式的“理想解”,写出过程; (2)若是方程x﹣2y=4与不等式的“理想解”,求x0+2y0的取值范围. 27.如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动.若两点同时出发,其中一点到达终点时,运动停止. (Ⅰ)直接写出三个点的坐标; (Ⅱ)设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积; (Ⅲ)当三角形的面积的范围小于16时,求运动的时间的范围. 28.某市出租车的起步价是7元(起步价是指不超过行程的出租车价
10、格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案: 方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返. 问选择哪种计费方式更省钱?(写出过程
11、 29.阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得. 解决下列问题: (1)请你写一个双连不等式并将它转化为不等式组; (2)利用不等式的性质解双连不等式; (3)已知,求的整数值. 30.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110
12、元,3副乒乓球拍和20个乒乓球170元。 请解答下列问题: (1)求每副乒乓球拍和每个乒乓球的单价为多少元. (2)若每班配4副乒乓球拍和40个乒乓球,则甲商店的费用为 元,乙商店的费用为 元. (3)每班配4副乒乓球拍和m(m>100)个乒乓球则甲商店的费用为 元,乙商店的费用为 元. (4)若该校只在一家商店购买,你认为在哪家超市购买更划算? 【参考答案】***试卷处理标记,请不要删除 一、选择题 1.A 解析:A 【分析】 先求出不等式的解集,再根据不等式组的解集得出答案即可. 【详解
13、 解不等式①,得: ∵不等式组 的解集是 ∴ 故选择:A. 【点睛】 本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m的不等式是解此题的关键. 2.D 解析:D 【分析】 首先解不等式组的解集即可利用a、b表示,根据不等式组的整数解仅为1,2即可确定a、b的范围,即可确定a、b的整数解,即可求解. 【详解】 由①得: 由②得: 不等式组的解集为: ∵整数解为为x=1和x=2 ∴, 解得:, ∴a=1,b=6,5 ∴整数a、b组成的有序数对(a,b)共有2个 故选D 【点睛】 本题考查一元一次不等式组的整数解
14、难度较大,熟练掌握一元一次不等式组相关知识点是解题关键. 3.B 解析:B 【分析】 先解出第二个不等式的解集,再根据不等式组只有两个整数解,确定m的取值范围. 【详解】 解:解不等式得, 解不等式得, , 不等式组只有两个整数解, m的取值范围是1<m≤2, 故选:B. 【点睛】 本题考查解一元一次不等式(组),不等式组的整数解等知识,是重要考点,掌握相关知识是解题关键. 4.D 解析:D 【分析】 由题意可知,a、b均为负数,且可得a=2b,把a=2b代入bx
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818